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PREFACE

This program was the third phase in the development of a long-life cryogenic refrigerator for

spaceborne missions. Traditional mechanical systems have been only marginally suitable for

long life because of wear, fatigue and friction associated with bearings, seals and linkages. In the

first two phases, Philips Laboratories designed and constructed a laboratory-model refrigerator

(Engineering Model), based on the Stirling Cycle, to demonstrate feasibility of long-life opera-

tion. The system used linear stationary coil motors for reciprocating the moving members of the

compressor and expander. Frictionless operation was achieved by suspending the moving parts

via active magnetic bearings which provide clearance seals between the compressor and ex-

pander. In a subsequent life test the refrigerator, designed to provide 5 watts of cooling at 65"K,

operated for 5 years with over 500 start/stop cycles.

The second-generation refrigerator, called the Prototype Model and described in this report, im-

proved on the original design in several key areas to enhance reliability, power efficiency and

weight reduction, and to enable the system to withstand launch loads and operate in any orienta-

tion. In addition, the goal was to preserve the five-year system lifetime demonstrated by the En-

gineering Model. A new electronic rack was designed and constructed to provide: drive signals

to the active elements, monitoring of several operating parameters, a system of interlocks for

graceful shutdown in the event of failure, and remote operation by external computer. The

refrigerator has two operating modes - Standby and Operate.

The system performance results of the Prototype Model refrigerator were excellent. The overall

weight of the machine was lower than the design requirement, as was the input power required to

produce the specified cooling. The time needed to achieve cryogenic temperatures, starting from

ambient, was much shorter than maximum design specification. Still to be verified are the ability

of the refrigerator to withstand launch loads and the five-year lifetime. These attributes will be

verified by testing at NASA.

The design of the refrigerator is well documented in drawings and specifications, so that replica-

tion is possible by any qualified fabricator. The electronic support system was constructed from

commercial-grade components and therefore is not qualified for flight. A program to design

flight qualified electronics would be a logical next step in the evolution of the refrigerator for

satellite service.
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1. INTRODUCTION

1.1 Background

In 1982, Philips Laboratories completed the design and fabrication of a laboratory-grade, Stirring-

cycle refrigerator (cooler) for NASA to prove the feasibility of long-life, frictionless operation

producing 5 watts of cooling at 65"K in a 20"C ambient. The refrigerator, called the Engineering

Model, extended the relatively short maintenance-free life of mechanical refrigeration systems by

essentially eliminating wear. This was accomplished by electromagnetically suspending the

moving parts of the refrigerator, thereby eliminating contact and the associated wear, and permitting

the use of clearance seals rather than contact seals. The Engineering Model also improved flexibility

of operation by using direct electronically controlled linear drives for the moving elements, thereby

allowing adjustment of amplitude and frequency.

A life test of the Engineering Model was completed in 1989. The system operated for 5 years with

no refrigerator failure over 500 start/stop cycles, and the electromagnetic suspension (magnetic

bearings) operated successfully for 7 years. Feasibility and life were thus demonstrated. This report

describes the succeeding phase of development (phase III) in which a flight-worthy prototype cooler

was designed and constructed to provide 5 watts of cooling at 65"K and, in addition, to withstand

launch and operate in a zero G environment.

1.2 System Design Requirements

The Prototype Model is similar in design concept to the Engineering Model. Linear moving-magnet

motors drive a compressor and an expander, suspended by frictionless magnetic bearings. However,

much of the design and the components are different in order that the system meet the requirements

of launch survival and long unattended life.

The system is designed for remote as well as local operation, using a two-command sequence. In

the standby mode the active elements are suspended but motionless. In the operate mode, the active

elements are reciprocated and cold is produced. The major design requirements were:

• Cooling Capacity

• Life

• Ambient Temperature

• Launch Load

• Cold End Stability

• Power Consumption

• Weight

5 watts @ 65"K initially with a 20"C rejection temperature,
and 5"K _legradation over system lifetime.

3 years minimum, 5 year goal with 1,000 on/off cycles

20 + 15"C

3gatdc,5.4gat7I-Iz

Less than 10"s inch lateral motion, less than 103 inch axial motion

250 watts operating, 50 watts standby

200 lbs, excluding electronic module.

In addition, the refrigerator must reach stable operation in less than 5 hours after start-up, and the

short-term temperature change of the cold end under stable operating conditions must be within

0. I'K over a 24 hour period. The system must also be operable in any orientation in an Earth

environment, in zero G, and on any type of spacecraft without deterioration of performance.

1-1





2. DESCRIPTION OF REFRIGERATION SYSTEM

This section describes the major characteristics of the refrigeration system, with emphasis on the

rationale behind the selection of the system design concepts and critical components of the

refrigerator.

2.1 Background

The most significant life-limiting mechanisms in a typical cryogenic refrigerator are degradation of

its cooling performance by contamination of the working fluid and wear of its beating and seal

surfaces. The contamination and wear mechanisms are interrelated. The nature of that relationship

is illustrated with the aid of Figure 2-1, a schematic representation of a conventional Stirling
machine.

For long, reliable operation, beatings and seals are normally oil-lubricated. In Stirling machines,

however, the seal separating the "thermodynamic" working spaces from the crankcase which
contains the drive mechanism, and consequently the beatings, is not perfect, or truly hermetic.

Consequently, the lubricant migrates past the seal and contaminates the working space.

.|.

II

"----'--- COLD END

_- WORKING GAS

(HELIUM)
SEALS

_ BEARINGS
LUBRICANT

Figure 2-1. Schematic representation

of a conventional Stirling Refrigerator.

It should be noted that substances other than lubricants if present in the refrigerator also contribute

to contamination of the working space. The most common contaminants are: air, small traces of

which are difficult to remove from the refrigerator during purging; hydrogen, adsorbed during

brazing and heat treatment of refrigerator components; CO and CO 2, which are outgassing products

of many organic materials; and water, which is adsorbed on all refrigerator surfaces during assembly.

Figure 2-2 shows tangible evidence of the contamination process just described. The crankcase of

a small cryogenic refrigerator was intentionally contaminated with very small quantities of water,

air, and CO 2, and operated for several hours. At the end of that period, the cold head of the

refrigerator was removed in a dry helium chamber, and the displacer was thus exposed for viewing

and photographing. The contaminants, which leaked past the piston and displacer seals (see Fig.

2-3), then froze out on the surface of the displacer/regenerator subassembly. The resulting "ice"

layer increased the thermal losses which normally occur in the annular gap between the cold finger

and displacer;, the increased losses resulted in the degradation of the refrigerator performance.
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Figure 2-2. Contaminated displacer/regenerator. Figure 2-3. Cross-sectional view of contami-

nated displacer/regenerator.

An obvious solution to the degradation problem is to eliminate the sources of contamination. This

suggests either dry or boundary-lubricated seals and bearings. Indeed, many cryogenic refrigerator
designs rely on reinforced Teflon seals reciprocating against hardened metal surfaces, and on

essentially dry bearings. The problem this approach creates, however, is illustrated in Figure 2-4,

Figure 2-4. Illustration of wear associated

with dry seals.

a photograph of a reinforced Teflon seal and the adjoining surfaces after several hundred hours of

refrigerator operation. As the photograph indicates, seal wear has taken place. This wear mecha-

nism not only increases the leakage past the seal, but also generates solid particles which clog critical

passages in the refrigerator, a condition which also contributes to performance deterioration.

Indeed, during the few hundred hours of operation, the temperature of the refrigerator degraded by

several degrees.
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The problemsdiscussedand illustratedabovesuggestthat if "years"of life are to be attained,
methodshaveto be found to eithereliminateor minimize sealandbearingwear,andto prevent
contaminantsfrom reachingtheworkingspacesof therefrigerator.

2.2 Maior Design Concepts

All design concepts are also selected to meet the design requirements of long life, low-power

consumption and low system weight. To eliminate the life-limiting problems of wear and contam-

ination, we selected non-contacting magnetic suspension for all moving parts, clearance seals and

all-metal/ceramic pressure walls for the working volumes. To implement these concepts in a

manufacturable refrigerator design, the number of moving parts must be kept to a minimum. A

direct rectilinear drive system powered by linear motors will result in a refrigerator with minimum

number of moving parts. The Stirling cycle will provide high thermodynamic efficiency for the

refrigerator with the desired cooling capacity. All reciprocating masses are resonating with gas

springs or magnetic springs to achieve minimum power requirements. All these major features of

the refrigerator are discussed in the following sections.

2.2.1 Stirling Cycle

In selecting the type of cryogenic refrigerator system for a given application, the primary factors

are cooling temperature, cooling capacity, operating life, system power and weight. Various

systems can satisfy different cooling requirements and each offers different combinations of life,

weight and power. In general, there are stored cryogens, mechanical refrigerators, thermoelectric

coolers and passive radiators.

The present cooling requirements of 5 W at 65°K together with the low weight requirements can

only be attained by mechanical refrigerators. Stored cryogen systems for a 3 to 5-year mission

became excessively bulky and heavy for space applications. Thermoelectric coolers are inefficient

and cannot reach the required temperature. Passive radiators would require impractically large

radiating surfaces to achieve the required cooling.

Of the various thermodynamic cycles in which mechanical coolers operate, the Stirling cycle has

proved to be more efficient for the required cooling performance than the Vuilleumier, reverse

Brayton and Gifford-McMahon cycles. In addition, the Stirling cycle requires no valves and only

two moving elements - the piston and the displacer. The dynamic seals in a Stirling cooler see low

pressure differences. All these features enable the practical implementation of non-contacting

magnetic suspension of all moving parts and clearance seals, which allow Stirling coolers to achieve

long maintenance-free operating life.

2.2.2 All-Metal/Ceramic Surfaces

The presence of impurities in the working gas of a cryogenic refrigerator is detrimental to its thermal

stability. Specifically, impurities tend to migrate to the low-temperature regions of the refrigerator's

working volume and freeze out on critical surfaces and in vital passages. The formation of such

frozen impurity layers reduces the effectiveness of the regenerators and increases flow losses. These

phenomena lead to a decrease in the cooling performance of the refrigerator.

Impurities can either be introduced into the refrigerator with the working gas during the initial filling

procedure, or be generated during operation. Past experience has shown that the initial introduction

can be prevented by filling the refrigerator through cryogenically cooled gas lines. The generation
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of impuritiesduringrefrigeratoroperation,however,is a complexphenomenonwhich until now
haseludedaneffectivesolution.

All materials used in the working volume of a typical cryogenic refrigerator contain impurities.

Some, like the metals used in the structure, regenerator matrix, piston, etc., can be outgassed (or

baked) at relatively high temperatures; others, organic materials like reinforced Teflon seals and

bushings for instance, cannot be outgassed and will continue to generate impurities while in intimate

contact with the pure helium working gas. Some organic materials have outgassing rates which

permit their integration into refrigerators when long, maintenance-free operation is not critical. This
is clearly not the case in spaceborne applications.

To eliminate the possibility of working gas contamination and to prevent the associated temperature

degradation, the Prototype Model refrigerator was designed to have no organic materials in contact

with the helium working gas. This was accomplished by encapsulating all organic materials in

titanium envelopes and by using ceramic materials for parts which would normally be made of
plastics, such as electrical insulators.

2.2.3 Rectilinear Drive and Linear Motors

The Stirling cycle requires the interphased reciprocating motion of its two major elements, the piston

and the displacer. Traditionally, this motion was generated by conventional linkage mechanisms

such as crank-types or rhombic drives. In both instances, the rotary motion supplied by an electric
motor had to be translated into the required rectilinear motion.

In the present design, a direct rectilinear drive actuated by a linear motor is used to reciprocate the

displacer or piston. To reduce power dissipation, the displacer was designed to resonant with

magnetic springs at the normal operating frequency. The piston mass was also designed to resonate

with the gas spring of the working volume. A cross section of the drive for the Prototype Model is

shown schematically in Figure 2-5. The displacer contains the regenerator and the armature (moving

REGENERATOR/DISPLACER

MOTOR

COILS

MOVING

PERMANENT
MAGNETS

IRON

HOUSING MOVING

, PERMANENT
MAGNETS

PISTON IRON MOTOR COILS

/

/
/-
/
/
/

t

HOUSING

Figure 2-5. Cross-sectional view of displacer and piston motors.
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magnets)of the linear motor and magnetic springs. In a similar fashion, the piston is directly coupled

to the armature, or moving-magnet assembly, of its linear motor. The direct rectilinear system which

reduces the number of bearings required to a minimum is a key feature that enables the practical

implementation of magnetic suspension in a mechanical refrigerator.

The linear motors operate on the principle of the Lorenz force law (F = i x B). When a current flows

in the motor coils, it interacts with a dc magnetic flux, and a proportional force is imparted to the

load. When the polarity of the current is reversed, the direction of force is reversed; hence, the

reciprocating motion. Such adc flux field can be obtained either from an additional dc winding or

from permanent magnets. The motor designs in the Prototype Model use permanent magnets, for

two major reasons. Adc coil would require power to sustain the field, while permanent magnets

supply the field with no power requirement. Furthermore, the availability of samarium cobalt

permanent-magnet materials having comparatively high energy products results in compact, highly-

efficient, motor designs.

The linear motors in the Prototype Model use stationary coils and moving magnets. This design

approach offers a significant advantage where long life and high reliability are critical: there are no

flexing power-carrying leads (i.e., wires). One drawback is that magnetic attraction forces due to

small asymmetries of construction and inhomogeneities in the properties of the permanent magnets

result in radial magnetic loads which must be supported by the beatings.

The major features of the moving-magnet motor that drives the piston are illustrated in the

cross-sectional view of Figure 2-6. Samarium cobalt permanent magnets are affixed to a hollow

arbor (armature) which, in turn, is fastened to the reciprocating member - in this case, the piston

rod. The motor coil is circumferentially wound around the permanent magnet structure. The coil

is enveloped by ferromagnetic material designed to provide the required magnetic flux paths.

MOVING
PERMANANENT

MAGNETS

STATIONARY IRON
POLE PIECES

MOTOR COILS

PISTON SHAFT

HOUSING

Figure 2-6. Cross-sectional view of piston motor.
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The displacer is driven by a motor basically similar to that used for the piston, but with a somewhat

different geometry, as illustrated in Figure 2-7. As shown, the inner-iron return path is an integral

part of the displacer armature, resulting in a more compact structure.

MOTOR DRIVE COILS

STATIONARY HARDWARE (TITANIUM)

MOVING HARDWARE (TITANIUM)

SOFT MAGNETIC MATERIAL

HARD MAGNETIC MATERIAL

Hgure 2-7. Cross-sectional view of displacer motor/magnetic spring.

The use of direct drives results in a free-piston and free-displacer system in which the piston and

displacer motion can be varied and independently controlled by close-loop feedback systems. The

position signals are provided by linear variable differential transformers.

2.2.4 Magnetic and Gas Springs

To ensure low power operation of the refrigerator, the motion of the displacer, the piston and the

countermass are provided by resonant spring-mass systems. Mechanical resonant systems usually

employ mechanical springs as a mean of energy storage. However, mechanical springs are life

limited because of cyclic stress fatigue failures. To meet the long-life requirement of the Prototype,

permanent magnet springs and gas springs with magnetically suspended spring pistons are used.

The compressor piston resonates with the gas spring of the working gas volume. The mass of the

moving piston is designed to resonate with the charge helium pressure of the refrigerator at the

operating frequency. The use of the working volume as the gas spring for the piston is a convenient

choice because it is a necessary component required to execute the Stirling cycle anyway. Except

for the loss due to seal leakage, it does not dissipate additional power over the input power to the

Stirling cycle.

The displacer has a set of magnetic springs consisting of concentric rings of permanent magnets

(Fig. 2-7). Both the outer and innerrings are radially magnetized but in the opposite direction. The

magnetic springs offer very low losses, and their designs are independent of the thermodynamics.

A gas spring is undesirable for the displacer because its design is restricted by the thermodynamic

parameter of the Stifling cycle. Unlike the piston, the action of a gas spring for the displacer is not

part of Stirling cycle--its power dissipation is a total waste since it does not contribute to the cooling

process.

The counterbalance needs a tunable spring-mass system to better adapt to any design change in the

operating speed. The gas spring is the clear choice for this purpose because the resonating frequency

can be tuned by simply changing the gas pressure. The narrow annular clearance between the
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stationaryhousingandthemovingcountermasscreatedbythemagneticbeatingservesconveniently
astheclearancesealfor thespringvolume. Nitrogen,which is a moreefficientgas-springfluid
thanhelium, canbe usedsincethecounterbalanceis physically separatedfrom the refrigerator
workingvolume.

2.2.5 Actively Controlled Magnetic Bearings and Optical Sensors

To eliminate the possibility of wear, the displacer and piston are supported and guided by magnetic

bearings. Although, in most applications contactless relative motion between machine elements

has been attained in the past through the use of rotary magnetic bearings, the current linear magnetic

bearings operate on essentially the same principle. Therefore, the design and control of these

bearings are based on proven technology.

The method used to achieve the magnetically suspended linear motion is illustrated in Figure 2-8.

Electromagnetic coils positioned on orthogonal circumferential positions provide the attractive

forces designed to float the reciprocating ferromagnetic shaft. Radial displacements of the shaft

induced by either design of stray loads are detected with the aid of optical position sensors which

provide a signal proportional to shaft position. An electronic control system compares this signal

with the center-position reference and creates a correction signal which produces a change in the

current to the electromagnets and a corresponding restorative force which reduces the error in the

radial position of the shaft.

ELECTROMAGNETIC
BEARING-

\

/
FERROMAGNETIC

BAND

OPTICAL

SENSOR

_ SHAFT

Figure 2-8. Method of magnetically sus-

pending shafts.

A more detailed view of the suspension method, without the associated sensor, is shown in Figure

2-9. The gap which is established between the reciprocating shaft and the adjoining housing is

shown (out of proportion for clarity) on both sides of the view. It should be noted that the gap,

which acts as the clearance seal between the working volumes of the Stifling cycle, is made possible

by the magnetic suspension and the accuracy with which the position of the suspended shaft can be
controlled.
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Figure 2-9. Typical cross section of magnetic bearing.

2.2.6 Clearance Seals

The sealing method most widely used in Stirling refrigerators has reinforced-Teflon piston seal rings

and wear rings riding in intimate contact against hardened metal cylindrical surfaces, as illustrated

schematically in Figure 2-10.

Figure 2-10. Schematic of conventional piston seal configuration.

The sealing approach is an important consideration in Stirling refrigerator designs; the seal has to

be "close to" hermetic, have acceptable endurance life, and be free of contaminants. The sealing

configuration shown in Figure 2-10 meets these criteria to some degree. The leakage associated

with it appears to be acceptable in most applications; its useful life is reported to range from a "few

hundred" to a "few thousand" hours; and although it is not contamination-free, the amount of

impurities it generates is less than that produced by alternate sealing approaches.

However, for applications which require "years" of reliable refrigerator operation, the sealing

method of Figure 2-10 is inadequate. Although its lack of hermeticity is acceptable, the life-limiting

wear associated with a tight, and therefore relatively leak-free, ring-to-mating surface contact is not.
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It is interestingto notethatwearnotonly increasesleakage,butalsogeneratescontaminants:the
frictionbetweenthereinforcedTeflonandthematingsurfaceisassociatedwith localizedhigh-tem-
peraturespotswhich generatecombustionproductsdetrimentalto the thermal stability of the
refrigerator.To avoidtheproblemsjustdiscussed,PhilipsLaboratoriesincorporatedclearanceseals
in thedesignof thePrototypeModel.

In generalterms,a clearancesealis a long, narrow,annulargapestablishedbetweentheoutside
surfaceof areciprocatingcylindricalelementandtheinternalsurfaceof amatingcylinder. Sealing
is attainedby the flow restriction provided by the long narrow gap. Further, since the pressure

gradient imposed on the seal is oscillatory from the reciprocating motion of the moving member,

the net volume of gas which traverses the seal is extremely small. The manner in which clearance

seals were incorporated into the overall refrigerator design is shown in Figure 2-11. The piston

clearance seal prevents gas from leaking in and out of the working volume during the pressure cycle.

Clearance seals in the displacer section serve to prevent working gas from bypassing the heat

exchangers and regenerators.

SEAL

REGENERATOR I DISPLACER COMPRESSION' "PISTON
SPACE

Figure 2-11. Schematic of clearance seal configuration.

2.2.7 Actively Controlled Counterbalance

In order to minimize the imbalance force introduced by the reciprocation of the piston and displacer,

an actively controlled counterbalance is used. A counterbalance removes imbalances by providing
an opposing force with equal magnitude to the combined force imposed by the piston and the

displacer. In the past, a passive counterbalance was used to remove only the majority of the

imbalance force at the fundamental frequency. In this passive system, a spring-mass system is tuned

to the fundamental frequency so that it counter-reacts against the disturbing force when excited.

The passive system removes a significant portion of the imbalance at the fundamental frequency,

but does nothing about the forces at the higher harmonics. Thus, the residual vibration may be

unacceptable to the overall system requirement.

An actively controlled counterbalance with closed-loop control is capable of attenuating the

imbalance at higher harmonic frequencies as well as the fundamental. Position signals from the

piston and the displacer are fed into the counterbalance position control loop. The countermass is

then commanded to move in opposition to the vector sum of these motions.
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All the designfeaturesfor long operatinglife found in the refrigeratorarecarriedover in the

counterbalance. The counterbalance consists of a spring-mass system and a linear motor. Gas

springs are selected for their long-life and tuning capability. The countermass is magnetically

suspended with the spring volumes sealed by clearance seals. Double-acting nitrogen gas springs

are chosen for their high efficiency and compactness.

2.3 Prototype Model Cooler

2.3.1 General

The Prototype Model Cooler, shown in Figure 2-12, was designed to produce 5 W of cooling power

at an operating temperature of 65°K with high-efficiency and to maintain that cold production for

a period of 5 years or longer. To attain the desired high-efficiency and compactness, the refrigerator

is based on the Stirling cycle. To achieve the required, maintenance-free life, the design contains

six major features previously discussed: a rectilinear drive, linear electric motors, magnetic

beatings, magnetic and gas springs, clearance seals, and all-metal/ceramic working-volume sur-
faces.

The refrigerator, shown in cross section in Figure 2-13, is composed of three major subassemblies.

In the expander section, gas is cyclically shuttled between the cold expansion end and the rear

compression chamber which is held at ambient temperature with an external liquid-cooled heat

exchanger. In the compressor section, the gas is expanded and compressed by the action of a piston.

Finally, in the third section a spring-mass active counterbalance minimizes axial vibrations when

tuned to the refrigerator operating frequency. All moving elements are supported on magnetic

bearings. It is important to note that the refrigerator is symmetric about its center-line, and the linear

motions of the piston, displacer, and counterbalance are directed along the same axis.

2.3.2 Expander Subassembly

The expander section is shown in detail in Figure 2-14. Helium gas, the working fluid, is free to

flow from the expansion space at the 65"K flange throughthe heat exchanger which is maintained

at 293°K with a water jacket. The regenerator is an integral part of the displacer. Annular areas

under the magnetic bearing form the two clearance seals, forcing the helium to flow through the

regenerator and through the heat exchanger. The magnetic bearing consists of four pole pieces at

right angles together with four radial position sensors. The displacer is driven axially with a

moving-magnet linear motor, and its motion is measured with a linear variable differential

.transformer (LVDT). A gas transport manifold surrounding the LVDrl ' forms the gas'passage to

the compression space. All electrical power connections are hermetically made using nickel and

ceramic feedthroughs. A vacuum Dewar thermally insulates the cold finger.

Two sets of concentric magnetic-rings are mounted on each axial end of the motor. Each set consists

of two concentric rings of magnet which are magnetized radially in the opposite direction. The

larger diameter rings are mounted in the stationary expander housing; the two smaller rings are

mounted in the moving displacer. These magnet rings constitute the magnetic spring of the

displacer.

The expander subassembly is instrumented (not shown) with: a strain-gauge pressure transducer

to measure the compression pressure, thin film detectors (TFD's) to measure the temperature at

various points along the housing, and two calibrated silicon-diode sensors to measure the cold-finger

temperature. A resistive heater applies a heat load to the 65"K cold end.
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COLD END SLIT
HEAT EXCHANGER

HELIUM GAS
PASSAGE
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Figure 2-14. Cross section of expander subassembly.

2.3.3 Compressor Subassembly

The compressor section is shown in detail in Figure 2-15. Annular areas under the magnetic bearing

on the left form the piston clearance seal, maintaining the cyclic pressure in the compression space.

The additional magnetic bearing at the rear of the piston supports the shaft but does not form a seal.

As in the expander section, each magnetic bearing is formed of four pole pieces and four radial

position sensors. The hollow vented piston shaft and the large volume in the center of this section

constitute a buffer space for the helium gas. As in the displacer, the control of the axial motion

entails the use of a moving-magnet linear motor and an LVDT.

The compressor subassembly is instrumented (not shown) with a pressure transducer to measure

the mean buffer pressure and TFD's to measure the temperature at various points along the housing.

A water-cooled heat exchanger maintains the temperature of the housing in the area of the motor.
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2.3.4 Counterbalance Subassembly

The counterbalance is shown in cross section in Figure 2-16. It reciprocates in opposition to the

combined piston and displacer motion with the gas spring-mass system tuned to the refrigerator

operating frequency. Annular areas under magnetic bearings form the two clearance seals of the gas

springs. To minimize weight, the motor iron is also the moving countermass.

The counterbalance is physically separated from the refrigerator and is filled with nitrogen which
is a less dissipative fluid for the gas springs than helium. The counterbalance is instrumented with

a pressure transducer to measure the charge pressure and an LVDT to measure the axial position.

The outer housing surface is water cooled to remove the heat dissipated by the motor and gas spring.
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3. THERMODYNAMIC AND DYNAMIC DESIGN

3.1 Introduction

In a Stifling refrigerator, a piston and a displacer reciprocate in a space filled with a working gas,

usually helium. To understand how the piston and displacer have to move with respect to each

other, we will first describe the basic operating principles of the Stirling refrigeration cycle. In this

process, a quantity of helium in the working space of the machine goes through a thermodynamic

cycle with four distinct stages, see Figure 3-1a: compression at room temperature (I), cooling to

operating (cold) temperature (II), expansion at operating temperature (III) and, finally, reheating to

room temperature (IV). The desired refrigeration occurs during the expansion of the working gas

in stage 111.

P

t

r_

,,2

3 /11

---,. V

IV I II m" lxr

1 2 3 4 0 300K
--'_T

Figure 3-1. a) Pressure and volume variation in ideal Stirling cycle (p-V

diagram), b) Position of piston P and displacer D, with integrated

regenerator, in working space at points 1-4 in (a).

The working gas is forced to go through this cycle by the reciprocating movements of the piston P

and the displacer D, as indicated in Figure 3-lb. The piston first compresses the gas and then allows

it to expand. The displacer transfers the gas from the compression space -- i.e., the room-temperature

volume between the piston and the displacer -- to the expansion space -- the (cold) operating-tem-

perature volume above the displacer. Twice in a cycle the gas is forced through the regenerator,

which, in the refrigerator described in this article, is part of the displacer. The regenerator consists

of porous materials (copper gauze, for example) possessing a high heat capacity and a large

heat-transferring surface. When flowing through the regenerator, the gas is ahemately cooled and

reheated by giving off and absorbing the quantity of heat Qr" The work performed on the gas in

the nearly isothermal compression is dissipated to the environment as heat Qc, in a cooler or heat

exchanger. The work performed by the gas during the nearly isothermal expansion is drawn from

the environment as heat Qe. As a result, the temperature of the upper wall of the working space --

referred to as the cold head or the cold finger -- is lowered significantly. The temperature curve

over the longitudinal direction of the working space is shown schematically on the right-hand side

of Figure 3-lb.
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Themotionof thepistonanddisplacer,illustratedin Figure3-1b,iscarriedoutby simpleharmonic
motion in therefrigerator.As canbeseen,themotionof thedisplacermust beapproximatelya
quarterperiodaheadof themotion of thepiston(correspondingto aphasedifferenceof approxi-
mately r_/2).

Theexpansionsideof therefrigeratorincludesthedisplacerwhichcontainsthethermalregenerator.
Themovingarmatureof thedisplacermotoris anintegralpartof thedisplacer;thestatorispartof
the housing. The compressionsidecontainsthepiston which is directly coupledto themoving
magnetsof its linearmotor. In bothmotors,themagnets,reactingtocurrentin thestationarycoils,
impart linearreciprocatingmotionto thedisplaceror piston.

Sincethedisplacerandpistoneachhavealinearmotoranddisplacementtransducer,eachis "free",
in thatthemotionsarenot mechanicallyimposed.Thephaseangleandreciprocatingamplitudes
areregulatedby anelectronicaxial-controlsystem. It shouldbe notedthat thereis a significant
differencebetweenamechanicaldriveanda "free"lineardrive. In theformer,thedynamicsof the
systemaresetbytheparametersof themechanicaldrive;therefore,theoptimizationof suchasystem
dealswith thermodynamicparametersonly. For high mechanicalefficiency in the "free" linear
approach,thedynamicparameters,suchasthemovingmasses,haveto becloselymatchedto the
thermodynamics;therefore,optimization of the refrigeratorinvolvesa coupledthermodynamic
processwhich ismoredifficult to analyze.

In additionto theforceexertedby thedisplacermotor,thedisplaceris alsodrivenby thepressure
differential establishedby theflow friction of theheliumworking gas,asit flows backandforth
throughthe regeneratormatrix. Knowledgeof this pneumaticforce is requiredto describethe
mechanicaldynamicsof thedisplacer.

3.2 Thermodynamics an d .D_cnamics of a Free-Displacer, Free-Piston, Stirling-Cycle
Ketngerator

A first harmonic analysis of the cycle dynamics was carried out to model the coupling of the

thermodynamics and the dynamics of a free-displacer and free-piston Stirling refrigerator. This

model, though simplified, provides the necessary design criteria governing the dynamics and the

performance characteristics of the Stirling machine.

3.2.1 Pressure Variation in a Stirling Refrigerator

In the first harmonic model, both the displacer and the piston positions are assumed to vary

sinusoidally. The pressure variation is approximated by a linear function of positions and velocities
of the displacer and the piston. Specifically, the pressure variation in the working volume is induced

by:

The position of the piston, y, which determines the total gas volume at any given time in
the work space,

The position of the displacer, x, which determines the distribution of the working gas, at
a given time, between the compression and expansion spaces, and

Flow losses due to motion of the displacer, which gives rise to a pressure difference in
the compression and expansion spaces.

These result in the following expression for the pressure in the compression space (Pc) and in the

expansion space (Pc):
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Pc = Pm + klY + k2x (1)

Pe =Pm+kl y + k2 x + b 1 ),+b 2.x (2)

where Pm is the mean charge pressure; kl, k 2, b 1 and b 2 ate constant coefficients.

If the displacer is leading the piston by a phase angle ¢, the displacer and the piston positions are

given by

x = X cos tat

y = Y cos(tat-C)

where to = angular frequency of the Stirling cycle and t = time.

3.2.2 Cold Production and Input Power

The cold production, Qe is given by

(3)

(4)

to _Pe Sddx'

when S d is the cross section area of the displacer. Using Eqs. (2), (3) and (4)

_i
Qe = 2 t0 Sd (XY klsin ¢ - bltaXYcos ¢ - b 2 tt_ 2) (5)

Under ideal conditions, there are no flow losses (i.e., b 1 = b2 = 0), and the cold production becomes

1

Qe, ideal = - "2 tO SdXYk 1 sine

The mechanical input power (shaft power) I)/to the Stirling cycle is given as

to

1_ = _"_ _ Pc Spdy

where Sp is the cross section area of the piston head.

Substituting (1), (3) and (4) in the above expression for W,
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I
1)¢= _ co k 2 S p XYsin¢ (6)

3.2.3 Coupling of th.e .Thermodynamics and Dynamics

The equations of motion for the displacer and the piston are given by balancing the inertia force,

pressure force and motor force on the displacer or the piston. They are

max - (Pc - Pe)Sd + kdX - fdid = 0 (7)

mpy- (pro- Pc)Sp fdip= 0 (8)

where m = mass

f = motor force constant (N/A)

i = motor current

k d = displacer spring constant,

and subscripts d and p refer to displacer and piston, respectively.

Also, the voltages in the motor circuits are given by

di d

Ld _Rdid + fd _" Ed = 0 (9)

dip

Lp _ + Rpip + fpy - Ep = 0 (10)

where L, R and E are the inductance, resistance and applied voltage of the motor coil.

In the design of a Stirling refrigerator with a required cooling performance, the displacer and piston

amplitudes and their phase angle are determined by the thermodynamic analysis of the cycle. Also,

in the same analysis, the pressure coefficients, k 1, k 2, b I and b 2 are obtained. With these known,

the driving current and voltage of the linear motors required to deliver the displacer and the piston

motions can be calculated from Eqs. (1) to (4) and (7) to (10).

3.2.4 Displacer Dynamics and Motor Input Power

From Eq. (7), the displacer motor current can be calculated as

id = Ic cos_t + Is sin_t

with

Ic = (-mdCO2X + bI SdtOYsin¢ + kdX)/fd (11)

Is = " (bl SdC°Yc°s0 + b2Sd_X )]fd (12)
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FromEq. (9),with aboveexpressionfor id ,

E d = (LdCOIs + Rdlc) cosc0t + (RdI s - LdlcC0

The displacer motor input power, Pd, can then be calculated as,

- fdtox) sincot.

0l

Pd - 2_ _ id Eddt

The first term is the ohmic loss of the motor coil, and the second term is the rate of work done on

the gas by the displacer motor.

3.2.5 Gas-Pressure-Driven Displacer

An important special case in the study of displacer dynamics is the reciprocation of the displacer

by the gas pressure wave only (no motor force), created by the piston motion. In this case, the motor

current is zero, and it is an ideal high-efficiency operation. The Prototype is designed to operate at

these conditions. The presence of the displacer motor allows fine tuning of the operating parameters,

if necessary.

With zero motor current, Ie - Is = 0, and Eqs. (11) and (12) give

and

bl

x =- r cos( (13)

ka - mao_ 2
tan¢-

b2S ao
(14)

With a given piston amplitude, Eqs. (13) and (14) determine the resulting displacer amplitude and

phase angle, and the resulting cold production is given by substituting Eq. (13) into Eq. (5), which

yields

1 y2 bl

c0s T

and the maximum Qe is obtained when

(b 1 o_cos20- k 1 sinc_cos¢)

tan 2¢ -_-_L__
blCO (15)

Ifb 1 << k 1/co, that is, the flow losses are small, it can be seen from Eq. (15) that the maximum cold

production occurs when (_ = 45", and the resulting cold production is
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1 y2 bl= _ __ k 1
Qe,max 4 o_ Sd b2

3.2.6 Piston Dynamics and Input Power

From Eq. (8), the piston motor current required to produce the desired X, Y and 0 is given by

ip = Jc coso_t + Js sin_t

with

and

Jc = (BY cos$ + Spk2X)/f,

Js = BY sin 0,

B = -mptO 2 + Spk 1

The corresponding motor voltage is given by Eq. (10) as

+ (-Lpoxl c + RpJ s - fpo_Ycos*) sinc.0t

The piston motor input power Pp can be calculated as

(16)

pp_ co _ ip Epdt2g

1 [Rp(Jc2 + js 2) + toXYk2Sp sinO]

The f'trst term in the expression forPp is the ohmic loss and the second term can be recognized from
Eq. (6) as the mechanical input power to the Stifling cycle.

To insure efficient power operation, the piston motor should be designed to operate with minimum
ohmic loss. The ohmic loss becomes a minimum when

x
mp = Sp(k 2

Substituting Eq. (17) into Eq. (16),

ip = Spk 2 X sin0

cos¢ + kl)/0_ 2 (17)

cos(o_t - ¢ + _ )

3-6



Thus, if the piston motor is de signed to operate with minimum ohmic loss, Eq. (17) has to be satisfied

and the motor current leads the piston motion by 90".

3.3 Design Optimization of a Stirling-Cycle Refrigerator

The Philips Stirling Computer Program was used to design the refrigerator for minimum input

power. The computer results included physical dimensions of the expansion and compression

spaces, operating parameters such as charge pressure and speed, and regenerator size and material.

Practical considerations of weight, reliability, and complexity of fabrication were then applied to

perturb the theoretically optimized design. Throughout the design process, practical considerations

and thermodynamic performance were iterated to achieve the optimal, physically-realizable refrig-

erator. The thermodynamic parameters are summarized in Table 3-1.

The cold production and thermodynamic input power were calculated by the Philips Stirling

Computer Program. The analysis included: the effects of regenerator losses, flow losses, heat

leakage through the regenerator matrix and walls, imperfect heat transfer between the gas and the

heat exchanger wall, annulus losses, losses due to shuttle heat transfer and seal leakage. All these

effects are considered in characterization of the thermodynamic parameters. The result of the
optimization is a design in which the sum of these losses is minimized.

To tSroduce 5 Watts at 65"K, the thermodynamic design requires that the piston sweep a certain

volume to create the required pressure wave. For optimal system efficiency with a free piston and

a linear motor, the diameter of the piston and the mass of the piston assembly is selected (Eq. 17)

so that the assembly resonates with the gas-spring force of compression at the refrigerator operating

frequency. Leakage past the piston is restricted by a clearance seal with a 191.tm (0.00075 in.) gap

and a 13 cm length. Effects of piston leakage are included in the thermodynamic computations.
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TABLE 3-1. Summaryof ThermodynamicandDynamicDesignParameters.

No.of expansionstages 1
Working gas helium
Displacerdiameter 3.155cm
Pistondiameter 4.445cm
Max. displaceramplitude 0.33cm
Max. pistonamplitude 0.9cm
Regenerator

Typewire mesh
Material phosphorbronze
Wire diameter 53 I.tm
Fill factor 0.36
Cross-sectionalarea 7.31cm2
Length 6.0cm

Cold-endHeatExchanger:
Type slit
No.of slits 40
Slit width 0.0305 cm

Slit depth 0.2 cm
Slit length 2.0 cm

Ambient Heat Exchanger:

Type slit
No. of slits 20
Slit width 0.07 cm

Slit depth 0.22 cm
Slit length 7.0 cm

Clearance Seals: 19 I.tm (0.00075 in) gap

Operating Parameters:

Heat sink temperature 293°K
Expansion temperature 65°K
Mean pressure 1.81 MPa (17.9 atm)

Operating frequency 18.3 Hz (1100 cpm)
Displacer amplitude 0.23 cm
Piston amplitude 0.74 cm
Displacer-piston phase angle 60"

Max. pressure 2.14 MPa
Min. pressure 1.52 MPa
Cooling power 5 W

Thermodynamic input power 100 W
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4. DESIGN OF PHILIPS LINEAR MOTORS

4.1 Working Principles

A significant aspect of the refrigerator design is the application of direct-drive linear motion for the

compression/expansion and displacement of gas in the Stirling cycle. This departure from the

traditional conversion of rotary to linear motion eliminates a large number of life limiting bearings,

a crankshaft, connecting rods, and the resulting mechanical inefficiency. By using linear motors

and axial control electronics, only two linear bearings per shaft are needed, and the stroke amplitudes

and piston/displacer phase angle can be adjusted during operation. Thus, the drive offers high
reliability, efficiency, and versatility.

The principle of operation of the linear motor used in this refrigerator (see Fig. 4-1) is similar to

that of the actuators used in most loudspeakers. Permanent magnets, rather than a field coil, establish

Figure 4-1. Schematic of linear motor for piston.

a steady magnetic flux field (see Fig. 4-2). The current through the coil interacts with the flux to

produce a force between the coil and the permanent magnet. Since the flux is oriented radially and

the coil is wound circumfe_ntially, the force is directed along the axis of the motor, thereby

producing linear motion.

The structure of the piston motor shown in Figure 4-1 is essentially tWO motors connected

back-to-back. The figure also shows an inner and an outer coil section for each of the two "motor

sections". The presence of substantial non-magnetic gaps (the coils) on each side of the magnet

rings reduces the radial force generated between the moving-magnet armature and the stationary

iron stator rings. These side forces represent a significant load for the magnetic bearings. The effect

of radially moving the magnet ring is reduced with this geometry.

An additional feature of this motor design is the ability to hermetically isolate the helium working

fluid from all possible sources of organic contamination. As discussed previously, contamination

results in long-term degradation of refrigerator performance, an obvious detriment. The hermetic

seal is made by welding thin-walled titanium cans over the magnets and the coils. If the cans are
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Figure 4-2. Flux plot of linear motor for piston.

thin enough (0.3 mm), the reduction in the motor efficiency will be small. Electrical connection to

the motors is made with nickel/ceramic feedthroughs.

The displacer motor shown schematically in Figure 4-3 operates the same as the piston motor (see

also Fig. 2-7). The geometry is somewhat different in that there is only one coil section for each

magnet section, and the inner iron is part of the armature. The small size of this motor, governed

by the diameter of the displacer, dictates these changes.

MOTOR DRIVE COILS

STATIONARY HARDWARE (TITANIUM)

MOVING HARDWARE (TITANIUM)

SOFT MAGNETIC MATERIAL

HARD MAGNETIC MATERIAL

Figure 4-3. Schematic of linear motor for displacer.

The counterbalance motor is essentially one-half of the displacer motor configuration with one coil

and one radial magnet ring. The flux path is completed by adding a soft-iron (Corovac) shunt piece

(Fig. 4-4). To effectively use the weight of the motor, the flux carrying iron piece and the magnet

ring also function as a major portion of the countermass. In this motor design the coil is fixed to

the housing, and the rest of the magnetic circuit elements of the motor is attached to the moving

gas-spring piston. The function of the motor is to provide power to compensate for the gas-spring

losses as well as providing forces to counteract the imbalance of the refrigerator occurring at higher
harmonics.
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Figure4-4. Linearmotorfor counterbalance.

4.2 Soft and Hard Magnetic Materials

4.2.1 Hard Materials for Permanent Magnets

A well-known design guideline for permanent magnet (PM) systems is that the magnet volume

required to produce a field in an air gap is a minimum if the magnet operates at its "maximum energy

product" point. The size of the magnet is minimized if the magnet is operated at its BHma x point;

thus, the larger the BHma x product, the less magnet material required.

In addition to the energy product, additional considerations that are important in long-life cooler

design are the material's thermal and aging stability. The overall design requirements are summa-

rized in Table 4-1. Also listed is a competitive ranking of PM materials that was available in the

early design phases (circa 1984-1985).

TABLE 4-1. Assessment of Permanent Magnet Materials.

PM Material

Performance Attribute

Initial Post Assembly *

Energy Product Energy Product
(MG(_) (MGOe) Long-Term Aging

SmCol-5 22-24 21-22 Excellent
SmCoPr 27-29 25 Poor
Sm2Co17 25-29 22-27 Good

NeFeB 30-35 ** ***

*After assembly temperature of 250"C for plating.

**Not recommended for use after exposure to that temperature.
***Unknown-data not available in 1984.
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Theenergyproductof the magnet is irreversibly reduced when exposed to high temperatures,and

the magnet is completely demagnetized when the Curie point of the magnet is reached. Thus, the

energy product of the magnet after exposure to the highest-temperature fabrication steps is needed
to evaluate candidate magnet materials.

Three generic candidate PM materials considered were: Nd-Fe-B, SmCo 5, Sm2Co17. The fast

material was relatively new when the initial designs were being generated (circa 1984), and no

long-term stability data was available. The temperature coefficient was very poor, and service of

the magnets was limited to 150"C. In particular, the long-term stability is related to the intrinsic

coercive strength - a parameter that was noticeably lower for the Nd-Fe-B magnets than for the

SmCo-based magnets. A thermally curing 2-part epoxy (Scotch-Weld TM 2214) was the candidate

glue for the magnet assembly and required cures of at least 110"C for high bond strength. A good

epoxy bonding of the assembly was required to make sure the glued mosaic of magnets remained

structurally sound and solid for a number of years. In addition, ion implantation or ion plating

techniques were initially considered for the shafts and housing to act as emergency "wear resistant"

contact surfaces in case of a complete bearing failure. The lowest plating temperature reported was
about 250°C.

The magnet segments could have been shielded and actively cooled during plating. However, to

be conservative, a minimum exposure of 200"C was initially planned for the displacer armature

(later in the program the plating was not used), and the displacer and piston magnets were specified

to be uniform and stable following exposures to this temperature.

NdFeB was not further considered as a candidate magnet material because of poor thermal and

unknown long-term stability. SmCo 5 doped with Pr was rejected for stability reasons as well. The

piston and displacer magnets use Sm2Co17 recipe with the specifications summarized in Table 4-2.

The counterbalance motor uses SmCo 5 because it had a lower power density requirement, i.e., a

significant large moving mass was needed for counterbalancing, and there was no advantage to

moving to a higher energy product magnet.

TABLE 4-2. Magnet Properties - After Stabilization.*

Piston

Maximum Energy Product (BH - MGOe) 27

Residual Induction (B r - Tesla) 10.2
H k (kOe) 14.0
H,_ - Normal Coercive Force (kOe) 10.1

Hci -Intrinsic Coercive Force (Hci) >16.0

Displacer

25
10.1

>12.0
9.6

4.2.2 Magnet Uniformity

The bearing side loads in the de to operating frequency range are dominated by magnetic field

uniformity as compared to geometric eccentricities. Thus, one key element to successful imple-

mentation of the linear motor/magnetic bearing cooler was to minimize the magnetic field nonuni-

formity. This was accomplished by careful quality control on every magnet (100% testing) used in

the cooler. Each magnet was tested and mounted on the respective motor armatures in such as way

as to minimize any radial imbalance forces from asymmetries in the radial magnetic field (see Sect.

6.2.2).

For the high coercivity Sm2Co 17 magnets, typical second and third quadrant demagnetization curves

were provided for each magnet segment after thermal aging. This ensured the long-term magnet
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stability andquality. Open or nearly closed-circuit magnet measurements could not indicate the

intrinsic coercive force -- a parameter usually associated with long-term stability. Actual magnet

traces were needed for each magnet segment. This is especially important in the displacer spring

magnets where very large field gradients occur at the edge of the facing magnet segments. Magnet

tracing of every segment required a 100% remagnetization and back-check against Helmholz

readings following thermal treatments to ensure repeatability. Though tedious and expensive, this

method guaranteed the initial condition and long-term behavior of these magnets. The SmCo 5

magnets were more reproducibly produced and only statistical lot testing of the demagnetization

properties was needed.

Another useful technique to quick batch selection is to use a Helmholz coil (an integrated flux

reading from a pick-up coil as the sample is displaced through a coil). For samples of constant

geometry it is a good means of matching magnet segments if they operate at or near the open circuit

"in air" condition. Such a technique was used to group the piston magnets into a mosaic and to

verify/double check the magnetization curves for the magnet segments. For the piston magnets in

the cooler, the Helmholz readings ranged from a maximum 152.0 to a minimum of 149.5 Maxwell

Turns (MXT).

4.2.3 Soft Magnetic Materials

Soft magnetic materials typically have very high permeability with very low coercivity. The soft

materials are used in the magnetic bearing pole pieces and armatures as well as in the linear motors.

They are supposed to confine the magnetic flux to specific areas. Ideally these materials should
have:

high resistivity (to minimize eddy currents).

high permeability and flux saturation (to minimize motor size).

The soft magnetic material of the bearing armature had additional requirements,

thermal - mechanical stability (bearing surface).

hermeticity - brazing compatibility.

For high performance, compact electromagnetic actuators, typically 3-4% SiFe or 2V-Permendur

were used. Though SiFe would have been the preferred choice over Permendur because of its higher

resistivity and hence lower eddy currents, it was dropped in favor of 2V-Permendur because of

extreme difficulty in forming hermetic brazes to titanium.

4.2.4 Motor

The requirements for the motor were somewhat different than those for the beating. Because

significant power was being delivered by the motors (in particular the piston motor), we wanted

these motors to be very efficient - or have very little eddy currents. For control reasons, it was also

desirable to have an efficient motor to minimize the phase angle between force and current such

that as wide a bandwidth axial control system could be realized based on a simple current driver

(position feedback only). On the other hand, restrictions that were placed on the beating actuator

material - that it be compatible with a hermetic environment (no organics) - were removed because

titanium sealing cans around the motors were planned.

In the Engineering Model, a solid Si-Fe material was slit to emulate a laminated structure in an

attempt to minimize eddy currents. A newer material became available and was employed in all
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the motors (excluding the displacer armature because of temperature limitations) of the Prototype

Model. The material called Corovac (available through VAC) has high electrical resistivity (- 1

ohm-cm), high saturation flux density (~ 1.9 T) and low core loss up to 10 kHz. The limitation of

the material was that it had a relatively low relative permeability (~100), low maximum exposure

temperature (150"C), and was partly composed of organic binder material.

The thermal limitations were not a problem except for the displacer armature, where conventional

2V-Permendur was used. The 150"C temperature was still compatible with epoxy cure cycles and

the motor "iron" segments need not be plated. A significant advantage of the material was that it

need not be laminated at all and could, if higher productions required, be directly cast to shape.

The effective permeability of the magnetic circuit for the large air-gap permanent magnet linear

motors was quite low. Thus, relatively low permeability soft magnetic material had only a minor
impact on leakage.

4.2.5 Test Results

A measure of the wide bandwidth capability and efficiency of these motors is the frequency

dependency of the force constant and inductance. Direct measurements of the force constant of the

displacer motor as a function of frequency indicated that the force constant was "flat" (equivalent

to the dc value) to at least 200 Hz with only a 7" phase shift between current and force up to 500

Hz. As expected, the inductance also remained "flat" in this frequency range.

Inductance and effective resistance measurements were also performed on the counterbalance and

piston motors. Table 4-3 summarizes the results. The motors indeed have wide bandwidth

capabilities with minimal eddy currents (or motor to current phase shift) in the frequency range of
the axial control loop (less than 100 Hz).

TABLE 4-3. Frequency Dependence of Motor Impedance.

Frequency Piston Counterbalance

_I-Iz) L(mI-I) R(ohms) L(mH) R(ohms)

Displacer

L(mh) R(ohms)

5 3.40 0.330 20.5 2.66

10 3.34 0.330 20.1 2.67 5.61

20 3.30 0.339 19.7 2.74 5.64

40 3.28 0.358 19.3 2.89 5.64

60 3.26 0.390 19.1 3.08 5.63

80 3.25 0.425 19.0 3.35

100 3.23 0.474 18.9 3.66 5.62

N/A

N/A

2.13

2.14

2.14

2.15

2.18

Thus, by using Corovac, simple-to-construct and wide bandwidth motors were realized. The

excellent wide bandwidth inductance of these motors should be compared/contrasted to the poor

frequency characteristics of the bearing actuators as described in Section 6. The radial bearings

used an unlaminated, highly conductive structure with a small air gap thigh permeability circuit)

whereas the motors employed more resistive solid soft magnetic material with a relatively large air

gap circuit or low effective system permeability.
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4.3 Magnetic Circuits

The electromagnetic force generated by a current flowing through a coil in the linear motor is given

by:

F = B/i

where F is the force, B is the magnetic flux density, I is the length of the wire-winding of the coil

within the magnetic field, and i is the current. The magnetic flux is created by a magnetic circuit

consisting of permanent magnets, soft magnetic irons, and air gaps. It is necessary to design a

magnetic circuit to supply the required magnetic flux density in the air gap occupied by the motor
coils.

To calculate the magnetic flux density, a reasonable approximation can be made using a simplified

analytical technique. This method can be outlined by the simple two-dimensional example of Figure

4- 5. Applying Gauss' Law and Ampere's Law to the magnetic circuit in Figure 4-5, one obtains,

*-- d----

IRON

A A
b AIR GAP a
T T

IRON

,_----C--_D

MAGNET
Figure 4-5.
circuit.

Two dimensional magnetic

and

BmC =BgdO, (4-1)

Bg

Hrn a = Hg b r = I'to b r (4-2)

where H and B are magnetic intensity and flux density, respectively, o is the flux leakage factor,

and r is the reluctance factor. Subscripts m and g refer to magnet and air gap, respectively.

Expressions for leakage factor 6 can be found in Electromagnetic Devices by Roters for various

geometries.
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TherelationshipbetweenBmandHmis a property of the magnetic material. For samarium cobalt

magnets used in the Prototype Model, a simple linear behavior exists that can be expressed as,

B r

Bm = "_-- Hm+B r

where B r is the remanence and I-Ic is the coercive force of the magnets.

(4-3)

Equations (4-1) to (4-3) determine the magnetic flux density in the air gap given the dimensions

of the magnetic circuit. The magnetic circuit of the linear motors can be analyzed in the same way.

A substantially more accurate calculation can be made by using finite-element modelling. The

Philips computational software 'MAGGY' is available for this purpose.

4.4 Optimization of Linear Motors

Motor efficiency (1"1)is defined as the ratio of the mechanical output power (l_r) from the motor to

the electrical input power (Pin), i.e.,

rl = W/P.
111

Since the losses in the motor are nearly all ohmic in the coil windings,

1
Pin = 1)1+ _ I2R

where I is peak current amplitude, and R is the coil resistance.

The motor output power W is equal to the magnitude of the work done on the motor by the piston.
One has,

1
1_- _ IVbsinO

where V b is the back emf of the motor coil, and 0 is the phase between I and V b. V b is induced
across the motor coil by the piston motion; thus,

V b = toBIY

where B is the magnetic flux _nsity seen by the coil _ndings with a wire length l moving with a

peak amplitude Y and an angular frequency to.

Now the motor efficiency can be written as

2W R
1+

(to BY sin0) 2 /2
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Theratio R/l 2 can be rewritten as

p

where 9 and V c are the resistivity and the total conductor volume of the coil, respectively, with a

total winding length lo.

Finally,

1 +
2_V __p__ lo(to V sinO)Z] "[B2Vc Cl l]

It can be seen from this equation that the motor efficiency depends on two groups of design

parameters. The first group is related to the operating conditions. The efficiency is higher when

(1) the output power is lower, (2) the frequency is higher, (3) the stroke is larger, and (4) the phase

angle between the current and motion is closer to 90". The second group is determined by motor

size and materials. The magnetic flux density is a function of the magnet size and magnet material.

The motor efficiency is higher when (1) the motor is larger so that both the magnet and coil sizes

are larger and (2) the coil winding is more conductive.

In designing the Prototype Model, the moving-magnet mass, speed and stroke of the motor armature

assembly are determined by the thermodynamics. Motor design optimization is essentially a
trade-off between motor efficiency and motor weight. With the operating parameters constrained

by the thermodynamics, one optimizes the motor design by searching for the minimum weight motor

that can deliver the required efficiency. Motor optimization was carried out to satisfy this criterion.

4.5 Motor Coil

In the previous section, it can be seen that motor efficiency is independent of the number of turns

and wire size of the motor coil. Thus, one can select these parameters to allow the motor to operate

at the available drive voltage without affecting the efficiency.

The equations relating the number of turns and wire sizes to the required operating voltage (E) can

be calculated from the motor voltage equation:

d/
E= L _ +iR+B/

where L is the coil inductance and j, the relative velocity of the coil. For the case of sinusoidal

operation, this can be reduced to algebraic equations.

To obtain higher efficiency and better heat dissipation, magnet wires with rectangular cross section
were chosen for the coil.
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Thedesignparametersof the linear motors are summarized in Table 4-4. The displacer motor with
its integral magnetic spring is described in more detail in the next section.

TABLE 4-4. Design Parameters of Linear Motors.

Design Parameters

Displacer Piston Counterbalance

Motor Motor Motor

Frequency (Hz)
Max. Amplitude (ram)
Magnet Material
Max. Energy Product (MGOe)
Coil Wire Size (ram x mm)
No. of Turns

Coil Resistance (Ohm)
Coil Inductance (mH)
Mechanical Output (W)
Electrical Input (W)

18.3 18.3 18.3
3.3 9.0 9.0

S5m2Co17 STm2Co17 SmCo 525
0.69 x 0.86 1.76 x 2.45 0.66 x 0.81
480 176 240
2.3 0.34 2.6
5.6 2.6 28
-- 100 10
0-3 135 16.5

4.6 Displacer Spring/Motor

4.6.1 Spring/Motor Design

During operation, the displacer shuttles gas between the cold and warm ends, reciprocating at a
sPecified frequency, stroke, and phase relative to the piston motion. The displacer construction

includes the regenerator mesh, bearing armature and radial position 'target' material, structural

walls, and linear motor. For designs of this type, the fluid damping forces acting on the displacer

are small in comparison to inertial forces during operation. Ideally, for compact cooler design, the

machine should operate at the highest frequency allowed by the regenerator heat capacity and fluid

viscous losses. In addition to the size and weight reduction, the size of the linear compressor motor

decreases with higher speeds, because the output force decreases. However, the displacer motor

power loss is proportional to the fourth power of frequency while the cooling capacity is only linearly

proportional to frequency. The significance of the displacer motor power had resulted in larger,
lower frequency cooler designs in the Engineering Model.

Due to the large ratio of inertial to damping forces, a resonant displacer/spring system would greatly

reduce the required motor power. In fact, 'free displacer' coolers have been made which have no

displacer motors. These coolers use the operating pressure wave to drive a resonant displacer/me-
chanical spring system.

Long life mechanical springs can be designed provided the operating stress levels are sufficiently

low. The damping forces for a well mounted mechanical spring are also quite low. However,

experience with mechanical spring balancers has shown that small particles are generated during

operation. Because these particles would be catastrophic to the clearance seals, mechanical springs

could not be used in the design. Gas springs have no wear problems, but do have limited linearity,

higher damping than tmchanical springs, and require an additional clearance seal. In addition, the

mean gas pressure of the spring and the cooler would have to be the same, thereby limiting design

flexibility. For these reasons, the gas spring was not used in this design. Magnetic springs, on the

other hand, do not need clearance seals and have no life-limiting properties. As a result of the

advances made in permanent magnet material, new, high-strength magnets with minimal long term

aging and good temperature stability are now available. These improvements have made magnetic

springs feasible, and the Prototype Model incorporates one in the displacer design.
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One advantage of the Engineering Model linear motor drive system is the freedom to adjust the

displacer and piston strokes independently as well as the phase. In a free displacer design, control

and flexibility is lost, though fewer components are needed. Thus, an adjustable spring or a spring

and motor is desirable to maintain operating flexibility.

The Prototype Model incorporates such an integrated magnetic spring/motor. The motor provides

control of the displacer motion. A schematic of the integral spring/motor with the displacer at full

stroke is shown in Figure 4-6. The moving magnets act as springs and interact with the stationary

coil to produce a force which is proportional to the current in the coils.

COIL-_ /- STATOR

1"- /\ /C T T,O A Y 

II | ' I I/ ",, i' I n Ii

FULL STROKE-'JXI'-- - - ¢"

---- TYPICAL FLUX PATH

PERMANENT MAGNET

Figure 4-6. Schematic of integral displacer magnetic spring/linear motor.

The construction of the motor is similar to that of the displacer linear motor of the Engineering

Model. Radially magnetized magnets are added to the stator at both ends of the coils to provide a

self-centering magnetic spring. Good linearity is achieved over the design stroke by proper

positioning of the concentric magnets. Another advantage of this design is the single diameter
construction. No dead space or void volumes are introduced which would have existed with a

conventional face-to-face repulsion magnet spring. The springs reduce the peak force requirements

of the motor. Table 4-5 compares the power requirements of the integral spring/motor design and

the linear motor design. In both cases SmCo 5 magnets are used because of their rigid magnetization

and excellent thermal and long term aging stability.

TABLE 4-5. Power Comparison: Integral Spring/Motor vs. Linear Motor.

Peak inertial force (N)

Moving mass (kg)
Total electric power (W)

Prototype Model Engineering Model

Spring/Motor Linear Motor

35 25
1.0 0.345
2 70
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Eddycurrentdampinggeneratedin thismagneticspringisdifficult topredictaccurately.Theeddy
currentsdissipatestoredenergyandlower thespringquality factor(Q). Anotherproblemwith a
magneticspringof thisdesignis theradialinstabilityandresultingsideloads.Thesideloadsoccur
notonly from magneticeccentricitiesresultingfrommechanicalconstruction,butalsofrom magnet
non-uniformity. The side loads havestatic as well asdynamiccomponents. Becauseof the
difficulty in estimatingtheseeffects,testswere performed with a dedicated test fixture.

Axial springs of this design have a radial stiffness instability which is less than or equal to -1/2 the

axial stiffness. The sign is critical since a 10 N/m axial stiffness PM spring has a radial stiffness

ranging from -5 N/m to negative infinity. For designs involving no soft magnetic material, the
inequality qualifier can be removed.

The stiffness of a simple magnet pair (no soft magnetic material) was tested and compared to a finite

element analysis of the same geometry (Fig. 4-7). The characteristic geometry of the magnet rings

is very close to the spring/motor design. Side load tests were performed by displacing the inner
ring toward the outer ring and measuring the radial force. The radial stiffness was measured to be

-1/2 the axial stiffness. The side loads for zero mechanical eccentricity of various magnet pairs

were measured to determine the magnet non-uniformity. Table 4-6 summarizes the test results

which indicate that matched magnet segments must be used to produce acceptable performance.

TABLE 4-6. Static Side Load Test Results.

Radial instability of single magnetic Spring pair

Axial stiffness at mid position
Radial instability stiffness:

• Theoretical analysis
• Finite element analysis
• Measured

11,000 N/m

5,500 N/m
5,500 N/m

5,000 - 7,000 N/m

Magnet non-uniformit_

Magnet pair number

Peak radial side force (N)
(in concentric position)

Equivalent geometric
eccentricity (era)

1 2 3 4

2.0 1.1 2.6 0.25

0._7 0._5

4.6.2 Dynamic Test Results

Following these static tests, two sets of springs were mounted to an active radial magnetic-bearing

test f'lxture which exhibited no friction and extremely low damping in the axial direction. Figure

4-8a is a schematic of the test fixture. The integral magnetic spring/motor was in effect split and

placed at either end of the bearing test fixture. Figure 4-8b is a scope trace of the position of the

moving mass vs. time resulting from an initial step displacement. The resulting Q of about 70 -

100 (an efficiency of 91-94%) indicates that there is very little eddy current damping in the magnets.

The quality factor, Q, does get lower as additional magnets or magnetic material are placed near the

spring, indicating that eddy current damping is not negligible.

The setup was further modified to test the integral motor/spring concept. An additional small

magnet ring was attached to each inner magnet ring as in Figure 4-8c, and a coil was placed around
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each inner magnet ring. This test was performed to verify the analytic procedure used to determine

the force constant of the displacer motor. Both dc and ac tests were performed using the motor to
excite the moving mass. The dc force constant of the motor agrees well with the predictions. The
displacer was driven off-resonance (as it would be in operation) and open-loop, and the resulting

frequency spectrum of the displacement was recon_,.d. Figure 4-9a(1) is a force displacement curve
of the spring for positive and negative displacements. At low amplitudes, the curves match well,
indicating that there should not be any even harmonics in the displacement spectrum. At larger
strokes the curves vary, indicating that even harmonics will be present. The resulting frequency
spectrum measurement of the displacement is shown in Figure 4-9b(2). These harmonics produce
insignificant adverse effects on the thermodynamics.

Through the introduction of bonded high energy product magnets, the damping can be further
reduced because of their very high resistivity. In a free displacer design, the motor can be eliminated
and axiallymagnetized springs can bc used,thussimplifyingthefabrication.

4-14



ORIGINAL PAGE IS

OF POOR QUALITY

ACTIVE RADIAL
PASSIVE ELECTROMAGNETIC

AXIAL SPRING BEARINGS

,/
SUSPENDED SHAFT /

Fern

FtNSTABILITY

L_
0.17cm

l-
Z
LU

_J
<

X
<

(a) Dynamic test schematic. (b) Damping with Perr_ndur backing (Q = 70).

DYNAMIC SPRING TES T - ONE SIDE

--_[ 0.7cm _-- TYPICAL FLUX PATH

PERMENDUR _ l ! ....
STATOR \ j I

I _ p TO BEARING TEST
= FIXTURE HOUSING

MAGNET lq-_ !" r . COiL ]. ADDED FOR INTEGRAL
I _ _ P -- _ MAGNET i MOTOR TEST!NG
k ) I _; ( . _ "r

_--_ I I t I ! I III I__ TO SEARING TEST

PERMENDUR -_. _J _'1 FIXTURE DISPLACER

ARMATURE _, 7 _-"_]_ _
/ ÷4 MOTION

(c) Dynamic test fixtures with coil and additional magnets.

Figure 4-8. Dynamic test results.
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5. ACTIVE COUNTERBALANCE

The sum of the reciprocating motions of the displacer and piston results in an unbalanced force on

the refrigerator and whatever it is mounted to. This unbalanced force is attenuated by a counterbal-

ance system. In the Prototype Model, the counterbalance removes imbalances by providing an

opposing force with equal magnitude to the combined force imposed by the piston and the displacer.

This is done by a countermass moving in opposition to the sum of the displacer and piston motions.

5.1 Design Description

The counterbalance of the Engineering Model is a simple passive system consisting of a mass on a

spring so that its natural resonance would keep it reciprocating 180" out-of-phase with the combined

motion of the piston and displacer at the refrigerator's operating frequency. Due to aging and fatigue

problems associated with a mechanical spring, it is difficult to achieve a five-year life with such a

passive system. Also, a passive system can only remove a portion of the imbalance at the

fundamental frequency and does nothing about the forces at higher harmonics.

The counterbalance of the Prototype Model has a linear motor and an active control system. This

greatly improves performance by providing compensation to spring damping and balancing at

higher harmonics. The Prototype counterbalance has a linear motor and a_linear v_ariable differential

transformer (LVDT). These, together with the motor control electronics, provide the active position

control of the countermass, which gives the necessary motion to balance the refrigerator. To save
power, the countermass is resonating with a double-acting gas spring. The motor has multiple

functions: it serves as the linear actuator, the countermass, and the gas-spring piston (see Fig. 5-1).

The motor with the exception of the coil is mounted on a hollow shaft suspended by magnetic

beatings. The narrow annular gaps (19 gm) between the housing and the shaft along the bearing

sections function as the clearance seals for the gas spring volumes. The efficient use of mass and

space results in a compact counterbalance design.

Figure 5-1. Active counterbalance.
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Thenominalinertial forcegeneratedby the combined motion of the piston and displacer is about

500-600 N. The countermass weighs 6.9 kg and requires a reciprocation amplitude of 6 mm to

counteract 500 N. To resonate the countermass at 19 Hz, a gas-spring stiffness of 97,500 N/m is

required. The counterbalance motor and its axial control system are described in Sections 4 and 7,

respectively.

5.2 Gas Spring Design

Gas springs together with magnetic bearings and clearance seals provide the necessary high
reliability and compactness for the Prototype Model. Its design is also flexible because the stiffness

is tunable by adjusting the charge pressure. The primary disadvantage of a gas spring is the relatively

higher losses due to heat-transfer effects and seal leakage. This is minimized in this design by using

the more "adiabatic" nitrogen working gas and a low compression ratio.

To cancel the net imbalance from the refrigerator, various combinations of moving mass and stroke

can be selected. Since the motor is part of the moving mass, the selection of the value for the moving

mass determines the efficiency of the motor. On the other hand, the overall size and weight of the

counterbalance are mainly affected by the stroke selected. Also, the selection of the mass or stroke

determines the stiffness of the gas spring required.

Spring losses are caused mainly by imperfect heat transfer and seal leakage, and these two losses

depend on the compression ratio (or pressure wave amplitude) of the gas spring. The higher the

pressure amplitude, the higher the peak gas temperature in the spring volumes; thus, the higher the

heat transfer losses. Also, higher pressure amplitude causes higher seal leakage. An ideal counter-

balance will have a large enough moving mass to allow an efficient motor design and a small enough
stroke to allow a compact gas spring design with low compression ratio. The low compression ratio

will also produce lower unwanted higher harmonic forces in the gas spring. Higher harmonic forces

generated by the compression and expansion of the gas spring will require additional motor power
to compensate for them.

For an adiabatic gas spring, its stiffness k as a function of displacement x is:

-.,

where, Po is the gas pressure at a reference displacement, V o is the corresponding volume of the

contained gas, n is the ratio of specific heats of the gas, and S is the piston frontal area. If the change

in volume is small relative to the initial volume V o, (S x << Vo), the expression for stiffness reduces
to:

nP o S 2
k=_

vo

The gas spring losses are due to irreversible thermal losses and leakage past the seal. The losses

can be equated to the work done on the gas by the piston which is:

= N S _ Pdx (watts) (3)
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whereN is the reciprocating frequency of the piston, and P is the gas pressure. If P and x vary

sinusoidaUy with time t, Eq. (3) becomes:

(,V=nNP_S sin_ (4)

A

where P and _r ate pressure and displacement amplitudes, respectively, and _ is the phase angle
between P and x.

The first harmonic equation of motion for the countermass is described by:

rn_ = pressure force + motor force

= -2 _ cos (tot-t_) + f i (5)

where f is the motor force constant (N/A), m is the mass of the countermass, and i is the motor

current.

From Equation (5), the motor current can be written as

1 2_S cos (c0- _)] (6)
i = _ [ - rnCO2 _ COSt.0t+

For minimum power, the countermass and gas pressure are turned to satisfy

mto 2 = 2_S cos_ (7)

With Equation (7), the current becomes

i= 2_S sin_
f sin o_t (8)

The total input power P to the motor can then be written as

e - Ce+N i2Rd,

or

A

• PSR

P = W+--_- sin2_

Since the losses in gas spring involve complicated processes, they cannot be predicted with

confidence. An experiment (see Sect. 5.3) was performed to measure the pressure amplitude (p)

and the phase angle (_) between the piston position and the pressure wave. The design parameters
for the gas spring are summarized in Table 5-1.
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TABLE 5-1. DesignParametersof Gas Spring.

Spring Configuration
Working Fluid

Frequency
Moving Mass
Charge Pressure
Amplitude
Piston Diameter
Mean Gas Volume

Max. Vol./Min. Vol.

Spring Stiffness

Double-Acting Gas Spring
Nitrogen
18.9 Hz

6.9 kg
78.4 psia.
6mm
70mm
230 cc each
1.2

97,300 N/m

5.3 Gas Spring Performance

The following instruments were used in the experiment:

• vibration exciter system (Bmel & Kjaer, 4818 & 4802"1")

• power amplifier (Bruel & Kjaer)

• sine random generator (Bruel & Kjaer, 1027)

• LVDT (Schaevitz, 499 XS-C)

• LVDT signal conditioner (Schaevitz, CAS-100)

• pressure transducer 0Kufite Semiconductor Products, xt-190-100)

• dynamic analyzer (Spectral Dynamics, SD375)

The geometry of the gas spring tested was one-half that of the double-acting gas spring in the

counterbalance (see Fig. 5-2).

PRESSURE
LVDT TRANSDUCER

PISTON
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A
/I GAS SPRING

/ VOLUME
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//A
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//A
//A
/j.4
I.I1'I
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/ / .4

// A

//"t TO

VOLUME

"//1

TO VIBRATION EXCITER

Figure 5-2. Gas spring.
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Figure5-3 is a schematic of the test setup. The gas-spring piston was connected to the vibration

exciter which provided the reciprocating motion, and a sine random generator was used to control

the sinusoidal motion of the piston. The motion of the piston was given by the output of an LVDT,

and the pressure wave was measured with a pressure transducer. The outputs of the LVDT and the

pressure transducer were read from the dynamic analyzer which also measured the harmonic

contents of the pressure and the piston motion. Figure 5-4 is a photograph of the setup.

gas_

I I I I
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I LVDT signall I

I conditioner _
_ressure transducer

vibration
exciter

output

poweramplifier

1

dynamic
analyzer

I

I x-yplotter
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random

generator

Figure 5-3. Schematic of test setup.
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Figure 5-4. Photograph of test setup.
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Figure 5-5 showsthepressurewavein thegasspringvolume and the piston motion. Figure 5-6

and 5-7 are the harmonic contents of the pressure wave and the piston motion, respectively. Figure

5-8 is the P-V diagram of the gas spring; the area enclosed by the loop is the spring loss per cycle.

The measured results and the results calculated under the adiabatic assumption are as follows:

2E-2

V

0

IEI

V

O-

1 V = 1,01 PSIA

O0 MSEC

. _.=J.A_2. __.

• 1 _E....

O0 MSEC 80.00

BO,O0

Figure 5-5. Pressure and piston motion of gas spring.

Spring stiffness (N/m)

Max. pressure (MPa)
Min. pressure (MPa)
Phase (pressure/motion) (')

Spring loss (thermal) (W)
Spring quality (Q)

Adiabatic Measured

(calculated)

41,800 40,700
0.531 0.528
0.400 0.400
- -2.2"
- 4
- 22

Designed

40,250

This experiment shows that the design of the gas spring of the counterbalance for the Prototype-

Model achieved the necessary spring stiffness. The nitrogen gas spring was proven to have high

spring quality (Q=22) with low losses. The double-acting gas spring in the counterbalance dissipates

about 10 W. This experiment also shows that the nitrogen gas spring operates very close to the
adiabatic condition.

With the piston moving sinusoidally, the second harmonic of the pressure wave is 5% of the

fundamental, as expected from an adiabatic gas spring. The double-acting gas spring of the

counterbalance will have lower second harmonics due to cancelling of the second harmonics from

each of the gas springs.
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6. MAGNETIC BEARING SYSTEM

6.1 System Description

The mechanical advantages of clearance seals, namely low friction and long mechanical life with

an all-metal/ceramic (i.e., non-lubricated) construction were made possible through the use of

magnetic bearings. Because the moving elements are electromagnetically suspended in their bores

without contact, wear is eliminated and mechanical life is governed solely by electronic reliability.

Contamination and thermodynamic degradation, classical problems of mechanical Stirling cycle

refrigerators, are completely absent.

The linear magnetic bearings used in this Prototype Cooler are similar in concept to those used in

the earlier Engineering Model. The general design of the linear magnetic bearing actuator is

identical to the more popular, conventional active radial magnetic bearing [1,2]. There are, however,

two areas of notable difference. First, significant development was needed to hermetically seal the

bearings into the cooler housing. For the Prototype Cooler, this requirement led to the use of "solid"

bearings and precluded the use of laminated actuator structures. This resulted in bearings that have

eddy currents well within the bearing control loop. As a result, a careful understanding of the

frequency dependent behavior of the bearings is essential to a proper modeling and design of the

bearing system. The fabrication techniques are covered in Section 9.

The other significant difference in the behavior of linear magnetic bearings comes from mechanical

system considerations. Because these bearings are also used as clearance seals, there is a very

narrow gap between the housing and the shafts. Gas damping plays a significant role in shaft

dynamics and hence magnetic bearing performance. The gas damping provided by the clearance

seals plays a larger role than mass (inertia) in shaft dynamics in the launch and operating frequencies.

This is the most important difference between these magnetic bearings and those readily available

for conventional rotating systems.

The magnetic bearing consists of three major components: the ferromagnetic pole pieces (the

actuators), the optical position sensors, and the electronic feedback system (the controller). The

configuration of the actuators and sensors is shown diagrammatically in Figure 6-1. Each ferro-

magnetic pole piece exerts a radial attractive force on the reciprocating shaft when current is applied

to its coil winding. By situating poles diametrically opposite, one end of the shaft may be cona-olled

in one plane by regulating the current in each of these two poles (see Fig. 6-2). By positioning sets

of poles at orthogonal planes at each end, the shaft may be suspended. The radial position of the
shaft is transduced with optical position sensors (see Sect. 6.4).

A block diagram of the electronic controller is shown in Figure 6-3. The pole-piece magnetics are

highly nonlinear:, the force is proportional to the square of the current and inversely proportional

to the square of the air gap. The electromagnetic field in the iron is influenced by the effects of

eddy currents, hysteresis, and magnetic saturation. The shaft dynamics also includes a damping
force caused by the gas squeeze film in the 19 _.m air gap.

The action of the feedback loop can be explained as follows. A reference center position of zero

volts is compared to the transduced position voltage from the optical position sensors. Any error

between these two voltages regulates the differential current in a diametrically opposite pole piece

pair so as to reduce this error. The compensator is designed to provide stability for the large restoring

forces over a wide frequency band. To do this effectively, the control loop bandwidth must be large

and insensitive to changes resulting from the nonlinear nature of the magnetics and dynamics. A
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Figure 6-3. Block diagram of bearing control system.

In the following sections, the pole piece actuator and shaft dynamics are analyzed. Then, following

an estimation of bearing loads and vibrational resonances and a discussion of the optical position
sensors, _e design and measurement of the magnetic bearing control system are presented.

6.2 Design Requirements

A prime goal in the design of the cooler was to stiffen the system such that the moving parts could

withstand launch aboard a shuttle. The previous bearing system (Engineering Model) was designed

to maintain clearance in a lg field and support only the internally generated imbalance forces. This

cooler, on the other hand, has to withstand a force level several times that of the gravity at "ac"
conditions.

6.2.1 Launch Vibrations

The launch vibrations are described by three independent specifications; random, acoustic, and

quasi-static. It has been shown [3] that the random vibrations and acoustic loads applied to the

cooler are much less severe than the quasi-static loads. The accelerations of the cooler housing

resulting from random launch vibrations were shown to be less than 0.020 g rms.

NASA uses a third specification to include the effects of shock loads, mount amplification, and

launch uncertainty. This specification is termed "Quasi-Static Loading" and is by far the most severe

of the three specifications on the refrigerator design. This data was compiled from previous flights

and represents the maximum acceleration levels measured on devices with similar isolation mounts.

The specification describes the vibrations during the three launch phases: lift-off, transonic/max-

mum aerodynamic pressure, and ascent. Each phase has an ac and dc acceleration component

which is applied to the refrigerator simultaneously in three orthogonal axes for specified duration.
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Theisolationmountfrequencydeterminestheacaccelerationspecificationof the design frequency

of 7 Hz, yielding the specifications shown in Table 6-1.

TABLE 6-1. Quasi-Static Launch Vibrations.

dc ac Vibration

Occurrence Acceleration Acceleration Duration

(g) at 7.0 Hz (g) (seconds)

Lift-off 1.5 5.4 20.

Transonic/Maximum 3.0 2.7 :10.

Aerodynamic Pressure

Ascent 3.2 0. 100.

Thus, these bearings must be significantly "stiffer" than those designed earlier, not only at "dc" but

also at 7 Hz, the natural frequency of the isolation mount. The actuators must be stiff enough to
withstand these accelerations. The relative motion between the shaft and the bore must be smaller

than some fraction of the radial clearance gap. A maximum excursion of 50% of the radial gap is

used as the design goal.

6.2.2 Non-Launch Associated Loads: Internal or Self Generated Side Loads.

The other internally generated forces resulting from the axial motion of the shaft and any

asymmetries in the system (motors) are much smaller in magnitude than the launch loads given

earlier. These loads are important, however, for vibration considerations in space - i.e., asymmetries

and side loads must either be compensated for, or are in some degree, transmitted through the

isolation mounts to the satellite. These transmitted residual forces may pose a problem for very

sensitive sensors that require stable, almost "inertial", reference frames. The analysis presented in

the earlier report [4] is sufficient to approximate the magnitude of the dc side forces in all cases.

The ac forces resulting from the axial displacement of the center of gravity were shown to be quite

small. However, the radial ac forces resulting from the motor asymmetry was not addressed and is
estimated below.

(1) AC Radial Motor Forces- Fringinl_

Because of the extreme symmetry employed during design and fabrication of the motors, the tic

forces resulting from system nonuniformity are insignificant in comparison to gravity forces.

However, these second-order asymmetries are significant in terms of ac loads. As will be shown,

the bearings are not "stiff' at the higher frequencies, and symmetry requirements primarily come
from the need to minimize these ac loads.

When the field windings are off, there is still adc centering force in each motor armature and as a

result of energy conservation laws, there is an associated radial instability. Based on a calculated

radial instability stiffness K r, the axial stiffness, K z can be approximated by:

Kz~2K r.

The proof of this is based on conservation principles and is good for motor structures with large air

gaps ( permanent magnet dc motors). The axial fields are considered to be "leakage" or "fringing"

fields and have an asymmetry of about 5% (the test specifications, however, for the motor magnets

is written in terms of the radial field component and not the leakage, axial fields). These fringing
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fields will producea side force when the motor windings are energized. An estimate of the

magnitude of this effect follows.

The axial force from the radial instability stiffness is Kzz. An equivalent magnetic field in the axial
direction is on the order of:

Bz~(2t.toFzr/A)l/2

where,

Fzr = reluctance force in the axial direction at a given displacement given by 2 K r z, and A = sur-

face over which B Z is integrated. Thus,

Bz~(41.toK r A) 1/2,

and the magnitude of the nonuniform field is

Bze = Bze,

where, E = relative magnitude of nonuniformity, -6
i.t° - permeability of free space = 1.25 x 10 .

The residual axial field interacts with the circumferential field windings to produce a net radial force

given by:

Fr= J X Bze or,

Fr= Bze(Fxm/Br )

where,

F = axial motor force
xm

Br = nominal radial field

Thus, an estimate of the radial ac force as a result of the asymmetric leakage fields can be made

based on an assumed axial leakage nonunifortnity. Table 6-2 presents the results of such an analysis

based on an assumed 5% axial field nonuniformity.

TABLE 6-2. Resultant Radial Force from Fringing.

Effective Surface Area (m 2)
K. (N/m)
A_xial Displacement, z (m)

Axial Field Nonuniformity, E

Equivalent Axial Field Strength, Bze (T)
Axial Motor Force, Fx m (N)
Radial Field, B r (T)

Radial Side Force (N)

Piston Displacer

0.020 0.004

140,000 14,000
0.008 0.0025
0.05 0.05

0.5 0.25
220 10
0.3 0.3

19.0 0.7
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(2) AC Side Loads from Radial Field Asymmetry

A second source ofac radial magnetic side forces emanate from asymmetries in the radial magnetic

field created during changes in the magnetic circuit. As the magnets are displaced or as the external

field from the coil is varied, the average dc working point of the magnet changes. This is also

referred to as dynamic working or "recoiling". This recoiling can come from a change in system

reluctance as wells an externally applied field.

The ac side forces resulting from axial field asymmetry are discussed above. An estimate is made

here of the ac side forces resulting from non-uniformity of trajectory of the working point of the

magnets along the "working point" curve (See Sect. 4.3).

To the first order, the net radial dc side force Frd c, is

EB 2 A

Frdc ~ 2 I_o

where,

E = % field nonuniformity

A = effective area of integration of radial field.

During operation, the working point of the magnets changes as a result of applied field. We estimate

the magnitude of the ac component to be:

where,

E_JE -- normalized asymmetric change in field strength
during operation.

Based on measured values of the selected piston and displacer magnets, we estimate that e.ac/e is on

the order of 1.0. The ac forces for the piston and displacer based on dc side forces given earlier [5]

are about 10 N and 4 N for the piston and displacer, respectively.

In other words, the magnitude of the ac side force is about equal to the de side force. This makes

sense since the absolute value of field is directly proportional to the magnets "working point" which,

in turn, is determined by the demagnetization slope and the field strength in the nominal centered

position.

We have measured ra4dial accelerations on the cooler housing of the Engineering Model to be on
the order of 0.5rn/sec'. For a complete cooler housing mass of at least 100 lbs, or about 50 kg, the

radial imbalance force is on the order of 25 N, which agrees in magnitude with the above analysis.
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Theabovewascalculatedfor puresinusoidalaxial motion. If any harmonics in motion are present,

the appropriate amplitude at a specific frequency should be used. Note that these are the ac forces,

produced as the shaft is held in the geometric center. Had a more sophisticated controller been used,

these side forces could have been minimized by adjusting the radial and theta orientation.

In summary, these forces are less severe than the launch loads, but are, however, important for
vibration considerations.

6.3 Bearing System Analysis and Results

As mentioned, the analysis and design of the magnetic bearings are hampered by the high

nonlinearity of the magnetic/mechanical system. Techniques for handling nonlinear control systems

directly are few; the most effective ones deal with linearization and the subsequent use of the

powerful linear control theory. In the case of the bearing, linearization assumes that the radial

displacement and current change little from the nominal value. Under this assumption, each of the

nonlinearities is linearized for small perturbations. The feedback loop is modeled as a conventional

linear regulator, and the bearing performance can be estimated using classical single input-single

output techniques.

The analysis of the magnetic bearing is in several parts. This first part is concerned with the general

analysis of the magnetic/mechanical system. Models of the force-current relationship, eddy-current

effects in the pole pieces, and squeeze-film damping are discussed. The second part is concerned

with the analysis specific to the refrigerator configurations. Finally, system predictions and

measurements of bearing performance are presented.

6.3.1 Analysis

(1) Force Properties

Consider the magnetic bearing shown in Figure 6-4. This single-ended bearing will produce forces

on the armature and attempt to reduce the co-energy stored in the system by reducing the total gap,

g.

The normal (perpendicular) force on ferromagnetic material is detemained by the magnetic pressure,

Bp. This pressure (also known as the Maxwell stress) is:

B B2

P 2gt o

Thus, the force over a given surface area can be written in terms of the normal field directly as

AB 2
F_-_

2tto "

The field, B, is related to the geometry of the system by
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Figure 6-4. Detail of single bearing actuator geometry in bearing plane.

where,

g = nominal gap for each leg
=S+C

We have ignored fringing fields (leakage) and the coil energy stored in the magnedc core material

(iron). Thus, for the case of a single bearing, and considering contributions from both legs, the total
force is given by

IJ'oA (Ni) 2
F=

4 g2

where "A" is the cross sectional area of each leg, and "N" is the number of turns of wire to produce

the coil. The force is quadratic in both current and position gap. The magnetic bearings used in this

cooler have "bias" or linearizing gaps "S" placed in the magnetic path. The above relationships

apply to the total gap as depicted in Figure 6-4 and not only the displacement, or perturbation, of

the gap, x.

For the magnetic bearings used in this cooler, two bearings are employed for each independent axes

and are placed 180" apart; thus, the net magnetic force acting on the shaft is the resultant of these

two bearings, or

Fnetmag = F_p - Fbottom
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For a generalizedelectromechanicalactuatorthemagneticcoenergyis a function of currentand
position.Thus,it isconventionaltoconsidertheforce(orenergy)contributionfrom eachindepen-
dent"controlling"variable.Thatis,determinethenetforceontheshaftfor smallchangesin current
(keepingthepositionconstant)andthenet forceresultingfrom smalldisplacements(keepingthe
currentconstant).Hence,twotypesof forceconstantscanbedeveloped,onefor currentandanother
for position.

For thecaseof no displacements, and using the Taylor series expansion for i= i b + 6 i, the force

constant K i for small changes in current is

where,

- N2 A IXo ib

Ki - g2

ib = the bias or constant current.

By convention, it is assigned a negative magnitude, i.e., as the current increases, there is an increase

in the net attractive force (as opposed to a repulsive force in a conventional mechanical spring).

It is useful to simplify this relationship by relating the force constant to the inductance of the

bearing,

L= _°N2A
2g

Thus, the current force constant in terms of "dc" inductance, Ldc, is,

Ki=
g

The above relationship is found to be extremely useful in understanding bearing behavior. A very

accurate indication of the current force constant, K i, can be made without having to perform any

force-type measurements directly. The control loop in the Prototype Cooler uses a "clipping" circuit

to ensure that there are no zero or negative currents; thus, for the case near equilibrium about the

bias current level, only positive current excursions are allowed, and the actual force constant about

the de condition is actually only one-half that given above, or

Kit: ='Ldc ib ,
g

which is also the result for a single-sided magnetic bearing. The subscript "c" is used to distinguish

it from the case where no clipper circuit is employed. It should be noted that this is the correct

force-to-current relationship and that the relationship presented in the previous report [6] was
incorrect.

The magnetic bearing has some bias current to linearize the bearing circuits and stiffness. This bias

current produces an instability force, viz., as the shaft is displaced toward the bearing, the attraction

force grows.

The instability position stiffness, K u, is related to the previous stiffness by
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Ki ib
K u -

g

where the negative sign is included in the K i term above.

In the above analysis the conventional Taylor series expansion was used and second-order terms

are dropped. Thus, for each bearing, the complete dc force constant parameters, can be simply

summarized in terms of inductance, gap size and bias current. Table 6-5 summarizes these values

for each of the bearing types in the Prototype Cooler.

TABLE 6-3. Bearing Force Characteristics.

DC bearing inductance:

dc (h)

Bias Current (A)

Additional Geometric properties:

Area of each leg (m 2)
Number of turns

DC Resistance (ohms)

Bearing Material

PISTON

0.7
69 x 10-6

0.06-0.075

0.0002
800
10.6

DISPLACER COUNTERBALANCE

0.31 0.5
273 x 10 -6 69 x 10-6

0.10 0.06-0.075

8 x 10 5 0.000334

1200 540
30 2.6
2V Permendur .....

Note the addition of the subscript "de" in the inductance term. As mentioned earlier, the bearing

(actuator) behavior is frequency dependent. The relationships derived above are valid for the

frequency range where frequency dependent losses (eddy currents and hysteresis) are small.

("Small" implies that these material losses are small in comparison to the coil resistance, or, there

is no phase difference between current in the coil and force developed in the armature). Thus, all

the mmf developed by the coils is used to produce magnetic fields that cover the entire surface area

and are not "crowded" by eddy currents. The Ldc term is used to denote the low-frequency force

relationships of the bearings. An analysis/characterization of the high frequency behavior is given

in Section 6.3.2. Also, the above analysis ignores any nonlinear current to flux properties of the
magnetic material.

(2) Effective Mass

For practical manufacturing considerations, the magnetic bearing actuators within each type of shaft

(piston, counterbalance, displacer) are the same, resulting in three different bearing designs. The

geometric properties are summarized in the previous section.

The magnetic bearings must support these shafts (displacer, piston, counterbalance) as they are

accelerated by the linear motors and maintain a safe clearance between the shaft and housing during

launch accelerations. Because the shafts are long (in comparison to their diameter) the effective

mass should, in theory, include some rotational terms, as well. That is, in addition to the mass of

the shaft, the moment of inertia, J, must somehow be included in the analysis. However, because

the bearings for each shaft type are the same, a simple and direct analysis is presented for determining

the effective mass at each beating for the purpose of bearing design.

The simplest case to consider is one in which the center of gravity is at the nominal mid-span between

the bearings. This is true for the piston and counterbalance shafts. For such cases it has been shown

that the eigen-frequencies are:
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2,/
L 2 '

and,

M

Note that M, above, is the total mass of the shaft. For the case of a round shaft, the moment of

inertia, J, about the center of gravity, is

__1 ML2
12

M
Thus, the f'trst eigenvalue reduces to

The larger of the two, one-half the total mass, is used to correctly size the bearings and electronics.

The electronics and actuators must have sufficient power/size to accelerate the shaft to follow the

housing during launch conditions and not saturate.

For the case of very unevenly distributed masses, as is only the case in the displacer, (where because

of the cantilevered support of the regenerator and displacer cap, the center of gravity is closer to the
cold end bearing) a simple and conservative estimate would be to use the total mass at the "cold

end" bearing. Table 6-4 summarizes the effective masses used in the bearing analysis.

TABLE 6-4. Effective Beating Mass.

Displacer 1 kg (M)

M
Piston 2.5 kg (~ _-)

Counterbalance
M

3kg (~_)

The eigen value relationship provided in the earlier report [7 ] for a nonsymmetric shaft is incorrect,

and will not be given here in corrected form because it adds little to the system analysis,

understanding, or design of the bearings. The system dynamics within the frequency range of

interest are dominated by damping forces (see next section) and not inertial effects. The effective

mass is of concern because the load specifications are written in terms of acceleration specifications

of the cooler housing. As the housing accelerates, the shaft should follow and the bearing system

is to maintain the required gap to eliminate any chance of damage. The bearings apply a force

sufficient to accelerate the shaft and follow the motion of the housing. These housing accelerations

are greatest at the natural frequency of the isolation mount, about 7 Hz.

The analysis relating the shaft motion, x s, to housing displacement, x i, is exactly analogous to the

analysis of a seismograph and can be written as:

Xs = ms2

x h SDK,
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where,

SDK = shaftdynamics= ms2+ bs + K e and, K e = effective magnetic spring constant.

In the frequency range of interest (7 Hz), the inertial term (ms 2) and damping term (Bs) are negligible

in comparison to K e, and the above can be simplified to,

where, M = mass of suspended shaft.

As K e gets very large, xs/x h is unity and the shaft exactly follows the housing. Well below the

natural frequency of the magnetic bearing/shaft, the shaft motion follows the housing motion

through the effective magnetic spring stiffness. Thus, what remains is to determine Ke of the bearing
system. In order to the this, not only the actuator dynamics but also the total bearing system dynamics

must also be modeled. The following sections deal with the dynamic modeling of each component
in the magnetic bearings and finally the total system modeling.

(3) Damping-Squeeze Film and Magnetic Bearing

As the shaft moves in the radial direction, additional non-conservative forces act on the shaft. These

forces are modeled classically as "damping" forces and can be related to the relative velocity between

the shaft and the housing. The damping forces come from two sources, gas dynamics and eddy

currents. It will be shown that gas damping is far greater than eddy-current damping in the frequency
range of interest.

Gas Damping

The gas force "or squeeze film damping" on a radially oscillating, infinitely long shaft/bore is well

known. The analysis is given in Cameron [8], and only the result is given below,

where,

.R)3B=12 _ List c

F
B- _ ' with,

_x

F = force on shaft.

I_ = gas viscosity (dynamic, or absolute)
R = radius of shaft.

c = gas film clearance or radial gap between shaft and bore.

_0 = oscillation frequency.

x = shaft displacement.

This analysis assumes that the eccentricity is small or,

x) l.5
(I+__ ~ 1.0

The bearings, however, are not infinitely long and using the above relationship yield non-conser-

vative results. A more accurate representation of the gas damping forces for the case of finite
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beatingshasbeendevelopedby Hays[9], and summarized in Cameron [8]. It is possible to modify

the infinite bearing relationship above to account for the finite length of the squeeze film bearing.

The Cameron/Hays data has been extracted and rearranged for the case of very small eccentricity.

The results of such simplifications yield the damping curve shown in Figure 6-5, where _,is a function

of the specific L/D ratio of the bearing. The damping factor, B, is then given by"

.R)3B= 2 TL I.ttc .

100.0

y,

61T

10.0

1.0

.1

.01

A= D/L=.35 (FRONT PISTON)

rl = D/L= .65 (OTHERS)

t J t I J J I • ] I I I I

.1 1.o lO.
D/L

Figure 6-5. Squeeze-film damping factor correction, 7, for journal bearings

of f'mite length.

The above relationship needs some explanation. The original Hays data was derived for the case of

one-half of a journal bearing. Hays stated that if the change in pressure above the shaft can be

ignored, then his results are valid for the full journal case. We take exception to that and use the

factor-of-two to yield equivalent results for the inf'mitely long bearing case.

Table 6-5 below summarizes the 7 factor and "B", used in the bearing analysis based on the above

relationship.
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TABLE 6-5. Damping Factors.

Displacer
Piston (back)
Piston (front)
Counterbalance

D/L B
....

0.65 8.0 4000.
0.65 8.0 32000.

0.35 12.0 90000.
0.65 8.0 840_.

B/M

(rad, (kHz)
4000, (.64)
12800, (2)
36000, (5.7)
28000, (4.5)

where,
c =18.8x10 "5 m

11 = 18 x 10" (for both N 2 and He in the pressure range of interest)

There is, however, still quite a bit of uncertainty in making predictions using these values. The

damping coefficients are highly nonlinear; furthermore, a superposition of motions resulting from

harmonics in force (in the radial direction) is NOT valid. Thus, the resulting motions predicted for

a case involving large spectrum of displacements (or velocities) is only approximate.

Also, the above analysis does not incorporate the effect of reciprocation of the shaft on the gas

damping forces. Thus, the boundary conditions used in Hays analyses are different from that actually

found in the cooler, and the predictions based on these relationships should only be considered

approximate. Nevertheless, it is important to note the sensitivity of system behavior to these gas

damping values. A comparison of system response for different gas damping values is given in
Section 6.3.3.

The column labeled "B/M" in Table 6-4 represents the frequency in which the inertial forces equal
the gas damping forces, or,

ms 2= Bs

or,
B

S -"
M

Thus, for frequencies below B/M, gas damping dominates displacement and for frequencies above,

the inertial terms are greater. An ANSYS simulation of the motion of the piston and displacer shaft

subjected to a sinusoidal force is given in Figures 6-6. At th6 _ping values ofinterest, the shaft

response is overdamped, and there is the characteristic 20 dB/decade (I/s) roUoff. For ligh_tly

damped shafts, the rolloff is 40 dB/decade as would be expected for a purely inertial system (l/s2).

The phase curves are also presented. The location of the large changesh magnitude and phase
correspond to resonances/antiresonances in the shaft/housing system. This is discussed in more
detail in Section 6.3.2.

Eddy Current Damping

The magnetic damping forces are much smaller than the gas damping forces. An estimate of the

magnetic damping magnitude is given below. An "order of magnitude" analysis that maximizes

the effect of damping produces the following relationship for damping factor, Cd,
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Figure 6-6. ANSYS simulation of piston and displacer shaft radial displace-

ment as a function of frequency for different damping factors.
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^ 2

Cd=t(_BD)
P

t = armature thickness

D = bearing surface diameter (shaft or armature diameter).

A

B = flux density

19= armature resistivity (40 _t-ohm-cm, typical).

Using values representative of the the displacer,

Cd _ .O04(g x .03) 2 ~ 10 N- S/'m,
40 x 10 -8

which is far lower than the gas damping coefficient, and thus magnetic damping can be ignored in

comparison to gas damping forces.

6.3.2 System Dynamics

(1) Mechanical Behavior of Bearing System.

It can be shown that the the equivalent stiffness of the electromagnetic bearing including gas
damping can be described as:

K e = Mag( K s G c Kic K a + SD ),

where, K e , the effective stiffness, relates the motion of the shaft to external disturbance forces.

For systems with high gain, the first group of terms (KsKuKiKaG) are much greater than the second
term resulting in the following approximation:

K e ~ Mag(K s G c Kic Ka),

where,

K s -- transfer function of position sensor (V/m)

- ...... bea -,gforcetocurrent0',r/A)ic ,, ,, " current amplifier (AN)

Ga= ...... compensator (V/V)

SI_ = (ms 2 + bs - K u) ~ K u at DC.

In this specific case, G c is a classical "lag-lead" circuit. This type of compensator increases stiffness

at low (de to launch) frequencies and improves phase margins at the gain crossover point (see next

section). The compensator time constants are f'me-adjusted to provide as large a sub-20 Hz stiffness

as possible while maintaining classical servosystem stability requirements.

The following sections describe the dynamic behavior, i.e, the transfer function relationships, for

the components in the magnetic bearing system. The component with the most influential dynamics

is the bearing actuator because it has, by far, the most narrow bandwidth.
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(2) Magnetic-Bearing Actuator Dynamics

The magnetic field within the bearings is a highly complex and non-linear function of winding

current. In fact, due to magnetic material hysteresis, it is not a single-valued function but is, to a

small degree, history dependent. Nevertheless, given the earlier engineering assumptions, it is

possible to approximate the frequency-dependent nature of the magnetic bearings.

We know that eddy currents lie well within the desired bandwidth by considering the magnetic field

skin depth for an "open" magnetic circuit and comparing it to the dimensions of the pole pieces. To

the fhst order, the depth of penetration is given by

where,

a = conductivity = 1/resistivity = (ohm-m)'l

f = frequency (Hz)

IX= absolute permeability (H/m)

H = volt-second/Ampere.

One can rearrange the above to determine the "limiting frequency", or the frequency at which eddy

currents reduce the flux in the core of a given geometry by 3 dB:

___L_
I} limit =

n ixa2

For system with air gaps, one should use the "effective" or "sheared permeability" [ 10],

Ix = Bo + liro n

Substituting representative values for the widest bandwidth actuator (displacer):

p= 40 x 10 "8 (ohm-m)
d = armature thickness - 0.005 m

gr -- relative permeability = 10,000
Ixo -- absolute permeability of air = 1.25 x 10 -6 H/m

lgap/liron = 0.01

tl ~ Ixo liron ~ 1.25 x 10-'4, resulting in

flimit ~ 40 Hz,

indicating that the eddy currents are well within the bandwidth of the control loop.

One way of viewing this is that the effective area, A, given in the earlier force constant relationships

is getting smaller as the frequency increases. It is conventional to consider reduction in flux as

frequency dependent, proportional somewhere between the first and one-half power of frequency

(in terms of control theory, a 1/s and I/f-s dependency).

It was shown above that the force constant is directly proportional to the inductance. Thus by

knowing (or measuring) the frequency dependence of inductance, one should obtain an accurate

measure of the frequency dependency of the motor force constant to facilitate control loop analysis.
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Experiments were carried out using flat versions of the piston pole piece to measurc the frequency

dependency of the force constant. A very stiff piezo-force transducer and measurement system was

used. Thus there was no relative motion between the pole piece, and the target and gas damping

normally found in the bearing system was not present. Also, the inductance vs. frequency was

measured for the the same piston bearing. Figure 6-7 summarizes the results. By knowing the

frequency characteristics of inductance, one can obtain precise measure of dynamic behavior of the
force constanL

FREQUENCY DEPENDENCE OF K,L,R (CO)-PISTON BEARING

z 60

Z g 30

ILl

0 20
14.

10.0
1.0
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_ --- ,/ INDUCTANCE

' MEASURED FORCE •_ •_
I CONSTANT _ • _..

J /
_,_,EFFECTIVE' DC /
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y R Rac= 10 tt,
[ I J , , , j_

10.0 100.

FREQUENCY (h2)

Figure 6-7. Frequency dependence of K,L,R of piston bearing.

Based on these inductance measurements, the effective dynamic properties of the magnetic beatings

can bc modelled by the following relationship:

Fb L
= (1 + % s)IJ2

where,

% = effective tirnc constant for each bearing type. The effective time constants, %, are summarized
in Table 6-6.

At a frequency corresponding to one-half the time constant, the magnitude has dropped off by 3 db.

m

r

m

m
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TABLE 6-6. Effective Time Constants for Each Bearing Type.

Bearin_ TYI_ Time Constant (s) -3dB Frequency (l-Iz)

Displacer 0.0035 90
Piston 0.011 30
Counterbalance 0.063 5

These "break frequencies" or time constants are again approximate. The magnitude and phase

behavior are well represented by this "half-pole" model in the frequency range from dc to twice the

break frequency. A more complete "transformer" model of the bearing would produce more precise

results in particular at the higher frequencies; nevertheless, this is adequate for overall bearing

system analysis and design. This frequency-dependent behavior of the bearings was particularly

bothersome in the current loop compensation.

(3) Optical Radial Position Sensor Dynamics

The optical position sensor is described in detail in Section 6.4. The sensor has a "flat response"

and introduces no significant phase within the frequency range of interest (0-200 Hz). There is only

a single pole filter in the optical position sensor output at about 500 Hz, and thus the response of

the optical sensor system can be adequately represented by a simple constant term, K s, where

subscript s denotes "sensor". The electronics are adjusted such that peak-to-peak displacements

within the bore produce a 10 V output. Thus, the optical position sensor transfer function element
is

K s = 0.26 x 106 Vim.

This extremely large signal sensitivity is due to the small gap and that the sensor surface is flush

within the housing bore -- the sensor does not have to transmit through a window which would

have caused a large de offset and decreased the signal-to-noise as in the case of the organic-based

eddy current sensors used in the Engineering Model cooler.

(4) Shaft Dynamics

A classical control system model was used in the early design phases to ensure that all system

components would meet the desired levels of performance. The shafts though rigid,, nevertheless

have a finite radial stiffness and stability. At sufficiently high frequencies, it is possible to excite
the shafts/housings to their mechanical resonances. The shaft/housing must be analyzed in unison

in order to get a correct picture of these resonances.

Rather than the resonances displayed in the earlier report, the displacer housing actually limits the

displacer bandwidth and not the shaft as originally thought! An ANSYS simulation was performed

on the displacer and piston shaft/housing systems. Unlike the displacer housing, the piston has an

anti-resonance followed by a resonance. The gas damping results in an overdamped system. The

anti-resonance must be avoided in our classic control loop methodology because of the very large

change in phase (90") at that point - this would lead to system instability. Thus, knowing the

"pinning" frequency that we must avoid, a rough estimate of system stiffness can be made. The

predicted antiresonances/resonances were quite close to that actually measured in the cooler. Table

6-7 summarizes the predicted antiresonance/resonance points of the piston, displacer, and displacer

housing.
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TABLE 6-7. SystemResonances and Bounds on the OLTF.

Antiresonance

7 Hz

Pinning
Resonance OLTF

Piston 400 740 35 dB

Piston Housing None 2100 N/A
Displacer 1000 1600 N/A

Displacer Housing None 300 32 dB

Based on a 20 dB/decade rolloff, one can estimate the available gain (and thus the stiffness) at 7

Hz, the launch frequency. Given these assumptions, the available gain (in riB) is :

201og(fp'm/fount ).

where,

in = pinning or limit frequencytrot = mount isolation frequency.

From the design relationships above, it is possible to deduce the effective magnetic bearing stiffness
from the o.0.pen-l_oop _transfer function (OLTF):

K e = SD ( 1+ OLTF)

where, SD = shaft dynamics, and we make use of the approximation

for high-gain systems,

1 + OLTF ~ OLTF, thus

K e ~ SD OLTF. (which is the open-loop gain with unity plant

transfer function, or as shown earlier, Mag(KsGcKicKa) )

Results for the displacer and piston are given in Table 6-6. (Note that in this simplified analysis,

the high frequency characteristics of the bearing actuator, driver and sensor are ignored). Some

compensation (lag) is added to increase the lower frequency stiffness, and some lead is added near

the crossover frequency to increase phase margin.

6.3.3 System Predictions and Measurements

The measured open-loop response of the magnetic beatings is discussed in this section. Figures

6-8a through 6-8c are the measured OLTF for each type of bearing in the cooler. The magnitude

of the OLTF at 7 I-Iz is noted, and the corresponding stiffness is determined through the relationships
presented earlier. (The low frequency (de) 5 Hz data is not valid for the counterbalance).

Table 6-8 summarizes the measured open-loop transfer functions at tic, 7 Hz and 20 Hz (displacer

only). The high stiffness at low frequencies is derived from the integral function of the control

system (lag component of the compensator).
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Figure 6-8. Open-loop transfer function (OLTF) measurements of the dis-
placer, piston, and counterbalance bearings.
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As notedearlier,thegasdampinghasaprofoundeffectonsystemdynamicsandhencetheavailable
bearingstiffness.Thebearingstiffnessathigherfrequencies(typicallygreaterthan10Hz) isastrong
functionof gasdampingvalues.Toboundtheanalysis,twovaluesof gasdampingcoefficientswere
usedin systempredictionsfor thedisplacer. Resultsof theanalysisarepresentedin Figure6-9.
The "B/2" curvewouldbethevalue predictedbasedon the1/2journal bearinggivenbyHays.The
"B" curveis theresult for thenominaldampingvaluegivenby equationin Section6.3.1(3)for a
finite bearing.
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Figure 6-9. Effective displacer bearing stiffness as a function of frequency for

two values of damping coefficient, B.

Though the stiffness of the piston and displacer bearings at 7 Hz is not Strongly affected by the value

of B, the phase response is. Figure 6-10 compares the open-loop transfer response without any

additional phase compensation (Gc=K) of the piston for two cases of gas damping. Both the low

and high frequency phase angles are very sensitive to gas damping. In fact, this phase response

limits the size of the lag/'mtegration at low frequencies and the bandwidth at high frequencies.

E

=
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Figure 6-10. Comparison of phase of open-loop transfer function (OLTF) of

piston bearing without compensation for two values of damping

coefficient, B.

TABLE 6-8: Measured Open-Loop Transfer Function at

Specific Frequencies and Calculated Bearing Stiffness.

Measured (k

OLTF Ke (N/u)

(da)

Displacer (Rear) 47 20
Piston (Rear) 50 110
Counterbalance

Measured 7Hz Required

OLTF Ke (N/u) Kreq (N/u)*
(da)

39 9 8
34 60 20
37 25-50 24

Measured 20 Hz

OLTF Ke(N/u)

(da)

24 3

(* Based on a 50% radial displacement and a 8 G load applied at 7 Hz).

The large range for stiffness presented in the counterbalance data above is a result of the uncertainty

of the gas damping value to within a factor of two. Because of the very large B/M ratio, the gas

forces play a larger role at an earlier frequency than in the displacer and piston. At 7 Hz, the effective

stiffness is hardly different for a factor of two change in gas damping for the displacer and piston.

This is not the case in the counterbalance. In any case, even taking the conservative (low) value for

stiffness, all bearings do meet launch requirements.

Figure 6-11 compares the measured OLTF for a displacer in the cooler and the predicted OLTF for

two different damping values.
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Figure 6-11. Measured and predicted behavior of the open-loop transfer

function (OLTF) of displacer bearing in the cooler for two different

values of the gas damping factor, B.

The test model described in Section 6.5.2 was used to verify this analysis. Even though the test
displacer was operated in air, the gas damping is nearly exactly the same as in the cooler. The shaft

dynamics, however, were different. Also, the optical sensors had better signal-to-noise in the test

displacer. Thus, the high frequency behavior of the test shaft was not identical to that of the cooler.

As such, a somewhat different compensation circuit was used that could not be used in the cooler

- primarily because of very low gain and phase margins. Nevertheless, the system on the test bench

was stable and produced a very high stiffness bearing. The pure lag compensator employed in the

test fLxture, while providing superb low frequency stiffness, added no phase lead at high frequencies.
This resulted in only a marginally stable system, and thus could not be used in the cooler.

Figure 6-12 compares the predicted total effective stiffness and the measured stiffness data. As can

be seen, the agreement is quite good. Note in particular the poor "high frequency" stiffness of the

loop. This is because the compensator, Go, is "rolling off" along with the mass dynamics. Thus,

high frequency (40 Hz) disturbances are not really rejected by the bearing control loop and nearly

all the stiffness at these high frequencies comes from the gas damping and inertial terms.

6.4 Opdcal Radial Position Sensors

6.4.1 Introduction

This section describes the theory and design underlying a position sensor constructed with optical

fibers. The sensor was built for measuring the gap between the piston and housing of a Stifling

cycle cryogenic refrigerator. In the sensor, light is transmitted through a bundle of fibers onto the
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Figure 6-12. Comparison between measured and predicted behavior of dis-

placer stiffness in bearing test fixture. (Gas damping value B =

4000 Ns/m).

shaft. The reflected light is received by another set of fibers and is finally measured by a photo

transistor. The principle of operation of intensity tmxiulated, fiber-optic displacement sensors is

well documented, and the original patent is attributed to Kissinger [11]. Cook and Harem [12]

described a mathematical model used to calculate received light power versus target displacement,

and calculated parameters such as the displacement detection limit. Hoogenboom and others [13]

developed an empirical model of received intensity for a pair of fibers, and used it to calculate fiber

bundle response. Johnson [14] reviews the types of fiber sensors used in practice. There are several

trade-journal reviews, such as [15], of available sensors, the commercial sensors being typically

used in on/off type applications such as object detection.

Sensor requirements for the cryogenic refrigerator magnetic bearings are related to signal charac-

teristics and mechanics. The sensor needs a range of at least 501.tm, resolution better than 1 I.tm,

high linearity, high bandwidth, and low temperature coefficient. As the 191.tm gap between the

piston and housing served as a gas seal for the refrigerator pistons, the front end of the sensor has
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to beintegratedflush with the bore of the piston housing. It also has to be hermetic and present no

organic materials such as epoxies into the helium workspace of the refrigerator. Long-life, mainte-
nance-free operation of 5 years was desired for the refrigerator.

Section 6.4.2 outlines the principle of operation of intensity-based, fiber-optic, displacement

sensors. In Section 6.4.3, a model is described for calculating the fiber pair response for an arbitrary

inter-fiber distance. Responses for several bundle geometries are calculated and compared to
experiment. Section 6.4.4 describes the sensor developed for magnetic bearing control and its

performance. One limitation of intensity-based sensing schemes is that they are sensitive to changes
in target reflectivity.

6.4.2. Principle of Operation

Consider the fiber and specular target arrangement shown in Figure 6-13. The distance between

the illuminator fiber and receiver fiber 1 is dfl. Light from an infrared LED is conveyed by the

illuminator fiber on to the target, forming a circular pool of light on it. A portion of the reflected

y _Fiber

L

0

e-

.-I

.>

I=

4- Y ---_ /_,..,._,_ _Pair 1 Response

/ ' Zpl _ / Pair 2

Target Distance y

Figure 6-13. Fiber pair response.

light couples into the receiver fiber, and is measured by a silicon phototransistor at the other end of

the fiber. If the target distance y is zero, all the light is reflected back into the illuminator fiber and

the received signal would be zero. As y increases, more light is coupled into the receiver fiber, up

to a distance Ypl where the intensity reaches a peak. Beyond this, the inverse square law takes effect
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and the received signal falls off as shown in the figure. If the inter-fiber distance is increased to df2,

the magnitude of the peak would be smaller, and the peak distance Yp2 would be larger than Ypl, as
shown in the figure.

Illuminator and receiver fibers can be arranged into bundle geometries, such as shown in Figure

6-14. Each illuminator couples into all receivers, the distinct pair response being determined by

the particular inter-fiber distance dfi. With N i illuminators and N r receivers, there are N i x N r
individual responses. A bundle can consist from two to thousands of fibers. The sensor response at

a particular y would be the sum of all the individual pair responses, as the light energy is scalar.

Three bundle types are shown: randomized, semi-circular, and dual, together with typical responses

for 1mm bundles of 25 I.tm fibers. Sensor design consists of determining appropriate fiber numerical

apertures, fiber diameters, and bundle geometries to obtain the desired response.

6.4.3 Model of Optical Sensor Response

(1) Fiber Pair Response

An optical fiber consists of a core of glass with refractive index n 1 surrounded by a cladding of

smaller refractive index n 2. The numericala_rture of the fiber, which indicates its light transmit-
ting capability, is given by NA = sin0 M = "_/n21- n2 . Light which enters the fiber within a semi-cone

angle of 0 M is conveyed to the other end of the fiber by total internal reflection, with negligible
losses. Light entering outside of this cone is lost; also, if a ray enters at an angle 0 i, it exits the fiber

at the same angle, considering in the first order a meridional (in any plane containing the fiber axis)

ray entering a straight fiber.

A gallium aluminum arsenide infrared light-emitting-diode (e.g., TRW OP260SL, wavelength

875nm) is a typical light source for fiber optic sensors. The output radiant flux density I0 i (w/mz)

of this LED versus axis angle theta is shown in Figure 6-15. The output from an optical fiber (when

illuminated by the LED) would have a similar characteristic intensity vs. axis angle, provided the

numerical aperture of the fiber was greater than that of the diode. The output of the fiber in any case

can be measured by scanning a phototransistor at several angles with respect to the fiber. This output

characteristic is important and determines fiber pair response.

An assumption is made here that radiation pattern over fiber output surface is uniform. Thus, a small

element dS located at any position on the fiber surface has a similar radiation pattern I0i as the overall
fiber itself.

Consider the fiber pair offset a height y from the target (Figure 6-16). The target is considered to

be a specular reflector, and in order to simplify the ray optics, we construct a virtual image of the

receiver fiber at an equal height below the target surface. This virtual image can be used to calculate

the power coupled from the illuminator fiber into the receiver fiber. The radiant flux density at the

receiver fiber plane, due to a small element d Si on the illuminator fiber, is circularly symmetric

about the normal through d S i and is given (see Figure 6-16) by the law of radiative interchange:

kI0idSicos0
(2)

I i (r) = (2Y) 2 (r)2+

where k is a constant depending upon target reflectivity.
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Theflux enteringanelementd Sjon the receiver causes a photodetector signal of

dPij = Ii(r)dSjIor (2)

where the distance r is the projection on the receiver plane of the line joining the two elements dS i

and d Sj, and Iqr is the sensitivity of the photodetector vs. angle.

The total photodetector signal is given by

p-Z (3)
q

Note that not all elements on the receiver fiber "see" the illuminating fiber. In Figure 6-16 only

elements within the shaded area surrounding element d Sj receive light energy from d S i. Also, no
attempt is made to calculate the absolute power receiveO by the phototransistor, and proportional
factors such as the reflection coefficient of the target, reflection losses at fiber-air interfaces, absolute

power output of the LED are all canceled by eventually scaling the peak sensor response to a unit
value.

The above method can be used to calculate the response P( dfi,m, Yn) of a fiber pair with an inter-fiber
distance of dfi, m at a target distance of Yn" Figure 6-17 consists of fiber pair responses of 251am
fibers at several inter-fiber distances.

(2) Sensor Response

Due to the number of nested summations, the above calculation (Eq. 3) of fiber pair response is time

consuming. However, given a specific IR source and fiber combination, this need be done only
once to obtain data for a range of fiber separations. In the present study, both fiber separations and

target distances are increased in a geometric ratio to obtain an efficient database.

A sensor design geometry, e.g., of a coaxial sensor, consists of coordinates of the individual

illuminator and receiver fibers. The inter-fiber distance is calculated for every fiber pair, and pair

response determined by interpolation from the above database. The sum of pair responses at a

particular Yn is the sensor response.

(3) Comparison With Experiment

Figure 6-18 compares sensor responses obtained using the above model and experimental measure-

ments. Figure 6-18(a) shows the output of a lmm randomized bundle consisting of 25 I.tm fibers.

The measured values arc shifted about 10ttm to the right of the model, and this shift occurs at zero

displacement. Backlashfrom the micrometer table is a likely cause of this shift. Figure 6-18(b) is

the response of a 'dual' sensor, the individual bundles being lmm in diameter and spaced 1.5mm

apart, again constructed with 25ttm fibers. Note that backlash would not show in this figure as the

scale is much larger. In both cases we see that the model tracks measured values reasonably. A

prediction of the general trend is thus possible, but the sensor has to be calibrated after construction

in order to obtain the absolute value of the peak response and the slope of the linear regions.

6.4.4. Magnetic Bearing Sensor Design

Optical fibers by their nature offer the facility of fabricating sensors using various interesting

topologies. The sensor developed for magnetic bearing position measurement is shown in Figure
6-19.
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Light is conveyed into the pressurized housing by means of the tips. A tip consists of a bundle of

fused glass fibers -- fibers which have been squeezed at a high temperature and pressure so that they

are fused together into a solid leak-tight rod -- metallized by sputtering and soldered inside a

cupronickel sleeve. The tip is then soldered into the housing using a lower temperature solder.

An IR-LED (peak output at 875nm) is the common light source for a pair of opposing tips. A

flexible fiber bundle from the LED is bifurcated into two channels for this purpose. Intermixed

randomly with each channel are return fibers conveying reflected light from the shaft back up to

the respective silicon phototransistor (peak sensitivity at 900nm). This flexible bundle terminates

at the tip by means of a threaded connector. This allows for easy disconnection of the optics during

machining, brazing, and soldering operations performed on the housing.

The randomized fibers are not aligned with the tip's fused fibers at the connector. This raises the

possibility that a pair of illuminator and receiver fibers in the flexible bundle might overlap a single

fused fiber, providing a common return path for the light, and resulting in a large reflection signal

at zero target displacement (undesirable). This problem is overcome by using very small diameter

fibers within the fused bundle, so that the area of the common return path is minimized, lmm

bundles were used, and the bundle response is similar to that shown in Figure 6-18a. The working

region is from 0 to 19 microns, and thus well within the positive going linear part of the response
c1Lrve.

A pair of tips sense gaps at diametrically opposite sides of the shaft. When the gap on side A increases

(sensed light also increases), the gap on opposing side B decreases (sensed light decreases). Since
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Figure 6-18. Comparison of model and experiment.
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Figure6-19. Fiberoptic sensorfor magneticbearings.

the two signals are linear, the difference (A-B) would provide a signal with twice the slope. In

practice, an analog dividing circuit is used to provide an output indicating shaft position (Fig. 6-20.)

according to:

y=10 (A-B) (4)
(A+B)

The above ratio provides a measure of shaft position which is independent of diode aging, ambient

temperature or variations in mean reflectivity of the shaft. Diode aging causes a slow reduction in

light output over time, while an increase in temperature causes increased light output. If the signals

A and B were both reduced by 50% of their original value, this factor would cancel in Equation 4

and output would remain unaffected. Similarly, increases in phototransistor gain due to temperature

are also compensated for as the common aluminum package ensures that the transistors follow the

same temperature.

Another sensor located orthogonally to the one above provides measurement of shaft X position.

The X and Y signals are used to actuate electromagnets which center the shaft within the housing.

A similar set of sensors and actuators located further on the Z axis effectively controls a total of 4

degrees of freedom of the shaft. The shaft is free to rotate about its axis; a linear motor oscillates

it along the Z axis for compression and expansion of the helium working gas.
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Figure 6-20. Output of magnetic beating sensor and phototransistors A & B.

Some performance measurements of the sensor are given below: Linearity was measured to be

within 3% of full scale output. Resolution is limited by noise of 14 gV/4tE, which corresponds to

a displacement of 4nm at a 10kHz bandwidth. The sensitivity is good with change in each

phototransistor signal of about 3% of mid-position output, per micron of target motion. The

temperature coefficient referred to displacement is quite low at 0.04 g/'C. It was measured by

cycling the sensor between 20 and 50"C with a fixed target gap. A spring-loaded fixture was used

so that temperature expansions would not cause gap variation during the heating and cooling cycles.

6.5 Radial Control System

6.5.1 Bearing Current Driver

(1) General

The inductance of _the coils of the actuator pole pieces of the magnetic bearing produces a phase

shift between the voltage applied to the actuator and the resulting current. This inductance is a

complex function of frequency due to the effects of eddy currents in the pole pieces. Since the

magnetic bearings are position servomechanisms, i.e., the position is sensed and then controlled

through the application of an electromagnetic force, an inherent 180" phase shift already exists in

the controlled dynamics (ignoring any damping). Thus, any additional phase shift between the

transduced position and the current which generates the force, such as that produced by the coil self

inductance, can result in instability of the overall control system. This explanation is somewhat

simplistic as the force is not a linear function of the pole piece current but is in fact dictated by the

pole-flux which is a decreasing function of current with increasing frequency due to the effect of

eddy currents in the pole pieces.
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To minimizethephaseshift from inductanceof thecoil, currentfeedbackis usedin thedriver for
theactuator.In previousdesignslinearamplifierswereusedto drivethecoils, thecurrentin thecoil
wasmeasuredwith a samplingresistor,andtheappliedvoltageto thecoil wasregulatedto keep
thecurrentin phasewith thereferencevoltage.

As withmostfeedbackloops,theadvantagesof thecurrentdriverareincreasedfrequencyresponse,
reducedphaseshift, and insensitivity to changesin the internal componentsof the loop. The
disadvantagesof currentfeedbackarethepossibilityfor instabilityin thecurrentloopitself,which
is now aminor loop in theoverall positioncontrolsystem,andtheneedfor a voltageoverheadin
theappliedvoltageto thecoils.Thevoltageoverheadis neededsincethemagnitudeof thecurrent
producedbyagivenappliedvoltagedecreasesasafunctionof frequency.Thus,athigherandhigher
frequencies,morevoltagemustbeappliedto keepthecurrentat the samelevels.The overhead
resultsin an inefficient useof the amplifier and coil magnetics.Therefore,as in most usesof
feedback,the primary disadvantagesare the increasedpossibility of instability and the useof
additionalpower.

Toaddresstheissueof increaseddissipation,aswitchingamplifierwasusedin thisdesign,resulting
in asignificantlydifferentsystem.Thecoreof theswitchingamplifierdesignis theUnitrodeL292
full-bridgecurrentcontrolswitchmodedriverchip.Theprincipledifferencebetweenthelinearand
theswitchingamplifiers is thatthe switchingamplifier appliesa pulse-width-modulatedvoltage
waveformto thepolepiececoil. Thedutycycleof thisdriver is adjustedtocontrol thelevelof the
current.While theswitchingamplifierhastheadvantageof beingrelativelyefficient, it introduces
additional complications.Specifically, switchingnoise can have an deleteriouseffect on the
sensitiveanalogcircuitry of boththecurrentandservoloops,andwhilecurrentmodecontrolwith
switchingamplifiers is a very high-speedtechnique,it is alsoknown to haveinherentstability
problems.

(2) Current Loop Compensation

To insure stability of the current driver, the dynamics of the feedback loop were analyzed and

compensation was provided. The compensator consists of a low frequency zero and a lag-lead

pole-zero pair. Further, the current amplifier filter introduces additional dynamics. A lag-lead

network reduces the high frequency gain sufficiently to avoid instability, but its very close proximity

to the zero allows it to achieve this without compromising the phase roll-off out to 1 kHz or so.

6.5.2 Bearing Test Fixture

(1) General

The bearing test fixture (Fig. 6-21) was designed to simulate the displacer section of the refrigerator.

The magnetic bearings consist of orthogonally placed coils near the ends of the test fixture housing.

Opposing coils are driven via bearing electronics to maintain the shaft within the center of the

housing. The optical reflective position sensors connected, via the fiberoptic cables, to the optical

feedthroughs sense the position of the shaft to the housing.

The advantage of a test fixture is that radial force imparted to the shaft can be transduced. The

bearing is shown on its test stand in Figure 6-22. A commercial shaker is connected to the

suspended shaft via a piezoelectric force transducer. The displacement between the shaft and the

housing is measured with the optical reflection position sensors, which are also used for feedback.

Thus, the stiffness of the bearing, i.e., force/displacement, is measured directly.
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Figure 6-21. Displacer bearing test fixture.

The parts were machined to the same tight tolerances as in the actual cooler - 19 micron radial gap.

The pole pieces and optical sensor feedthroughs were joined using the same techniques as in the

cooler, thus testing the procedure to braze the magnetic materials and maintain their optimized
magnetic properties.

(2) Measurement Techniques

Transfer function measurement is accomplished in two ways, using either a single-frequency

sinusoid or a white-noise signal. When a single-frequency sinusoid is used, a lock-in amplifier

extracts the desired frequency components of the measured signal from the background noise. For

a white-noise signal, a two-channel Fast Fourier Transform (FFT) spectrum analyzer is used to

directly measure the transfer function between two points. In this case, the instrument measures the

power spectral densities of the two inputs, and the cross-spectral density, and computes the transfer
function magnitude and phase by digital processing techniques.

The measurement of open-loop frequency response for the bearing requires some explanation. The

control system model requires the shaft to be positioned at its nominal center. The open-loop

frequency response can only be measured if the loop is closed and stable. Otherwise, the highly

nonlinear nature of the system would mask any readings. To make an open-loop frequency response

measurement from a closed-loop system, the technique in Figure 6-23 was used. The test signal
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Figure 6-22. Fixture in test stand.

(Vinj) is injected into the loop, and signals V 1 and V 2 are measured. The desired response is V2/V 1

and is realized by the following:

VI=V +Vin.
V 2 = _IHG2 _¢.

= G1HG 2 (V,, + V inj)
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Therefore,V2]V 1 = G1HG 2 which is the open-loop response. For this analysis to be accurate, the

signal Vin j must not load the loop. Thus, the impedance looking forward should be high and the
impedance looking back should be low. The loop is broken and a non-inverting operational amplifier

is inserted in the bearing electronics for this purpose. It should be noted from the figure that this

technique works for arbitrary injected signals and does not depend on the dynamics included in the
transfer function blocks.

(3) Results

Results of a static load test are given in Figure 6-24. Various known masses were hung from the

shaft midway between the bearings, and the average displacement of the shaft was recorded. The

figure shows the displacement of the shaft from center as a function of the load per bearing. The

bearing driver electronics current limiting circuitry prevented extension of the graph for very large

loads. For displacements over 1 micron, the stiffness is relatively constant at about 80 N/micron.

The plot of bearing stiffness vs frequency is shown in Figure 6-25. For this test, the excitation

frequency for the shaker was varied, and the force and displacement were measured. Single
frequency sinusoids were used corresponding to the points on the curve. This test was conducted

primarily to determine the stiffness of the bearings subjected to loading at 7 Hz, the frequency of

maximum loading during the launch phase. The load on each bearing was held constant for each

frequency at 80 N, which corresponds to 7g at 7 Hz, the design goal for the refrigerator. The dynamic

stiffness at 7 Hz of the bearing is about 50 N/micron. Figure 6-26 is a bearing stiffness vs. frequency

plot with the load on each bearing held constant at 25 N corresponding to 2g at 7 Hz. The figure

indicates the trend in predicted values of stiffness discussed in Section 6.3 of the magnetic circuit
design at higher frequencies.
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Figure 6-23. Technique for measuring open-loop frequency response.
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7. AXIAL POSITION CONTROL SYSTEMS

7.1 General

The axial motions of the three cooler shafts are regulated by independent, closed-loop position-

control subsystems. Each closed-loop system consists of the linear motor and shaft dynamics

(described in Sect. 4), a feedback position sensor, and a motor driver. The sinusoidal commands

for the piston and displacer motions are digitally generated to provide frequency, amplitude and

relative phase control. These parameters are programmable via the System Controller. The

counterbalance command signal is derived from the position outputs of the piston and displacer and

tuned to minimize the net vibration of the cooler housing. Each motion control subsystem has a

local interlock scheme to protect the cooler from mechanical damage. The interlock status is

monitored by the System Controller which can take appropriate action in the event of a fault. A

block diagram of the axial control system is shown in Figure 7-1.

LVDT
CONOfflONER

I

DISPLACER

fLV TMOTOR CONDITIONER
DRIVER

Vvv
COUNTERBALANCE

MOTOR

AXIAL
REFERENCE

GENERATORS FREQUENCY -_

SYSTEM PHASE

CONTROLLE; l PISTON AMPLITUDE
DISPLACER AMPLITUDE

PISTON

1
PISTON MOTOR

-i 1PISTON PISTON

"1 MOTOR

DRIVER

DISPLACER

LVDT
CONDITIONER

DISPLACERI_iMO_

VU

i

DISPLACER

MOTOR
DRIVER

Figure 7-1. Block diagram of axial control system.

7.2 Motor Drivers

The three motor drivers are constructed in separate chassis to simplify the initial testing and

calibration. They are nearly identical in design, so the description which follows applies to all three

drivers (see Fig. 7-2).

The command input is compared to the measured position output of the LVDT sensor to produce

an error signal. The measured position signal is tested by a window comparator to provide

overstroke detection. A similar circuit monitors the magnitude of the error signal to detect a general

fault in the closed loop (i.e., loss of motor power or friction of the shaft).

7-1



COMMAND
INPUT

POSITION
INPUT

-k.

OVERSTROKE

DETECTOR

ERROR

i COMPENSATOR

r

LOOPERROR I
DETECTOR

=i LOGIC ANDINTERFACE

"1

SYSTEM CONTROLLER
DIGITAL I/O

STATUS/ENABLE

Figure 7-2. Block diagram of motor driver.
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The error signal is then passed through a phase compensation/gain amplifier tailored to provide
stability and bandwidth for effective control of each position control loop.

The output of the compensator circuit is applied to the command input of the motor amplifier. The

motor amplifier is an efficient high frequency PWM type with local current feedback and internal

fault detection (over temperature, short circuit protection). Each amplifier is sized according to the
energy requirements of the particular subsystem.

Logic circuitry interfaces the motor driver with the System Controller. This allows each motor

driver to be individually accessed to enable or disable the subsystem and to read status information.

The overstroke and loop errors are latched and intedocked with the driver enable/disable signal to

provide protection at the subsystem level. They can be overridden by the System Controller for the
purpose of initializing the system.

Motor amplifier faults will disable the motor amplifier and must be reset by a sequence from the
System Controller. They will not clear if the fault persists.

7.2.1 Position Loop Optimization

Control loop optimization was performed by measuring the open-loop response of the closed loop

system (see description of this technique in Sect. 6.5). The resulting magnitude and phase plots

describe the gain and stability of the system's small signal response.

Figure 7-3a shows the uncompensated o_.pen loop .transfer function (OLTF) for the piston driver

system. The second-order mechanical system response is evident with the resonant peak near 20

Hz. It is necessary to have gain at dc in order to maintain the desired center position, because the

piston is influenced by non-symmetric gas forces during normal operation. High gain at resonance

is required to minimize position errors.
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Figure 7-3. Piston open-loop transfer function.

The maximum gain can be improved by extending the bandwidth while maintaining stability. This

is accomplished by adding a phase lead network to provide additional phase margin, then increasing
the gain to provide satisfactory phase and gain margins (nominally 30 degrees and - 10 dB). A high

frequency pole (~1 kHz) is added, which does not affect the loop response, but eliminates useless
(and audible) noise from the system. The compensated OLTF is shown in Figure 7-3b. Figures 7-4
and 7-5 describe the compensated OLTF data for the displacer and counterbalance, respectively.

7-3



ID

"0

0

GAIN

I I I I I II

0 500 Hz

180 o

0

-1800

PHASE

0 500
Hz

Figure 7-4. Compensated displacer OLTF.

_>

m

o

1 I I I I I I I

HZ 100

Odb

180 °

0 --

- 180 °
0

I | I I ! t I I I

PHASE

I I ! I
[

100
Hz

Figure 7-5. Compensated counterbalance OLTF.

7-4

r



Ultimately, the maximum gain is limited by the large signal response of the motor amplifier circuit,

which is a function of motor impedance and available supply voltage. This introduces a pole, with

its characteristic phase lag, at lower and lower frequencies as the current magnitude is increased.

The displacer operates at resonance and does very little real work, and hence requires small currents.

The piston also operates at resonance, but real power is required for thermodynamic input. In both

cases, the electrical time constants of the motors are sufficiently low to avoid large signal
instabilities.

The counterbalance, however, has a time constant of a greater order of magnitude, and must provide

forces at the higher harmonic frequencies. These conditions and requirements are at odds, so that

tuning the loop for adequate small signal bandwidth (i.e., able to cancel third harmonic vibrations)

would result in an unstable large signal response. This instability was observed during bench tests

as the system was initially turned on with the shaft at one end and the command for 'center',

providing a large signal 'step' response test.

Such conditions are possible (and probable) during normal startup, so instability must be avoided

to protect the cooler from mechanical damage. Rather than sacrifice position loop bandwidth, the

current limiting feature of the motor amplifier was employed to effectively roll off the large signal

loop gain. The active circuitry of the current limiter does this without introducing any phase lag,

which would compromise closed loop stability. The end result is to provide a stable counterbalance

position control loop with bandwidth sufficient to effectively suppress fundamental and third
harmonic vibrations.

7.3 Axial Position Sensors

7.3.1 Basic Operation of LVDT

An LVDT _inear Variable Differential Transformer) is a device for measuring linear position. In
its most basic form it consists of a transformer having two secondaries symmetrically wound

adjacent to (or over) opposite ends of a single primary winding and includes a moveable ferromag-

netic core. If the primary winding is excited by an ac source, then the position of this internal core

will determine the relative degree of signal coupling between the primary and either of the two

secondaries. The core (or armature) is attached to the item whose position is to be determined.

Figure 7-6 shows the general construction of an LVDT. The primary consists of a cylindrical

solenoid with (in the case of this illustration) the two secondaries wound at opposite ends of the

primary. The entire coil assembly is contained within a ferromagnetic shield, and an internal

non-magnetic cylindrical bore-liner tube completes the enclosure of the coils.

The cylindrical core is displaced axially within the liner, thereby affecting the relative levels of flux

coupling the primary and each of the two secondaries. When the core is displaced (as shown)

towards one of the secondaries, the mutual inductance between the primary and that particular

secondary is increased. The output from this secondary will correspondingly show both an increased

amplitude and an increased phase shift. Likewise, the other secondary will produce an output with

a reduced amplitude and decreased phase shift. Electronic circuitry converts the differences in

amplitude and phase between the two secondary ac signals to adc voltage. The electronics are
covered in more detail in Section 7.3.4.

(1) Modelling the LVDT

Figure 7-7 is a simplified broad band model of a transformer; it represents the LVDT with only one

of the secondaries shown. Particularly at the higher frequencies, many of the parameters are
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Figure 7-6. Sectional-view of a three-coil LVDT.

difficult to determine analytically and must be empirically measured. For example, Cps is not only
determined by the winding style used, but also by the spacing between the primary and secondary
coils, and is affected both by the axial position and the material composition of the core. Likewise,

the interwinding capacitances, .C.pand C s, are interactive with the core materials. R s is a resistance

representing "core" losses, but it must also include losses that are present in the shielding materials.

_e-_mplified model assumes lumped parameters and linear differential equations. In practice,

the LVDT windings actually appear more ike a transrmss|on line with distributed capacitances and

resistances. Also, any fully useful model must include the mutual coupling between the secondary

windings and the electrostatic effects (capacitance vs. voltage) of each secondary referenced to the
primary.

(2) Empidc_ Methods_

The straight-forward, high-frequency transformer model is not accurate enough to apply directly to

the design of the coils and bobbin. However, if the model diagram is reconfigured to approach more
closely the transmission line appearances of the true LVDT, this modified circuit can be used as a

tool for predicting the qualitative effects of design modifications. That is, by testing an actual bobbin

and then using these measured values in the model, it is possible to analyze trends associated with

small design changes about this empirical operating point. Figure 7-8 shows an expanded circuit
model of an LVDT transformer;, the values were derived from data on an actual test bobbin. If this

model is simulated with an at: analysis program, the predicted response is as shown in (b). Precisely

z

m
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Figure 7-7. Simplified model of a broadband transformer. For correct comparison

with an actual LVDT, an additional secondary winding would have to be included

as would a value for the inter-secondary capacitance. Since this model assumes

lumped discrete parameters, it is generally unsatisfactory for precise analysis.

R : source (generator) resistance

C_ : primary winding capacitance

RLPp • primary leakage inductance• primary winding resistance

R e : core (titanium, etc.) losses

L e : primary magnetizing inductance

R s : secondary winding resistance

L s : secondary leakage inductance

C s : secondary winding capacitance

R_llS: primary to secondary capacitance: equivalent load resistance

how the circuit is broken down into individual elements will have a considerable effect on the output
from the model.

Figure 7-9 shows the f'mal winding style used in the LVDTs. The primary is wound evenly

section-by-section along the bobbin. The winding with a sectioned bobbin as shown here provides

reduced inter-winding capacitances and allows the numbers of turns to be carefully controlled. The

two secondaries are then wound at either end over the primary. The number of turns per section in

the secondaries is graduated to provide a precisely linear output from the LVDT when the core is

displaced. The actual displacer bobbin has twelve sections, and the piston (and countermass)
LVDTs have seventeen sections.

7.3.2 Use in Refrigerator

Three LVDTs are included in the cryogenic refrigerator design (Fig. 7-9). One LVDT, with a range

of nominally 10 rnm, measures the axial position of the displacer armature. Two other units, similar
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Figure 7-8. Broadband model expanded (a) to represent more closely transmission
line characteristics of actual transformer. Values shown were obtained from a test

bobbin with segmented construction. See Figure 7-7 for a description of parame-

ters. Predicted response is shown in (b).

to the first LVDT except for length (a linear range of 20 mm), are used for axial position

measurement of the piston and countermass armatures. In addition to providing positional infor-

mation for their respective local control loops, the piston and displacer LVDTs provide information

to the con_l loop electronics for the counte_s driver system. Re LVDT system outputs,

therefore, not only have to provide positional information at the fundamental operating frequency

(nominally 20 I-Iz) of the machine, but also must have a bandwidth sufficient to provide information

on the harmonic content to the countermass control logic.

The specifications for the LVDT accuracy, linearity, and frequency response were dictated mainly

by the control requirements of the countermass drive system. With the higher frequency response

characteristics imposed on the LVDTs, the bandwidth of the LVDT position sensing system had to

be essentially "flat" (0 dB gain attenuation, minimal phase shift) to 100 Hz. For this reason, the

f'mal filter poles in the electronics (see Sect. 7.3.4.) were placed at 10 kHz. The operating frequency

was then chosen as 100 kHz in order to reduce the output ripple to an acceptable level.

7.3.3 Special Considerations

Skin depth is defined as that depth at which the alternating current in a conductor has decreased to

1/e of its surface value. This depth is a function of frequency and of both the resistivity and

permeability of the conductor material. For example, in the design of the LVDTs, the wall thickness
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Figure 7-9. Multi-section multi-winding LVDT as used in final design. For clarity,

only six sections arc shown.

of the titanium bore liner tube is nominally 0.5 mm. At the 100 kHz operating frequency, the

titanium tube has a skin depth of about 1.1 mm and therefore would be a partial magnetic shield.

By reducing the primary flux reaching the core, the titanium tube significantly reduces the voltage

output from the secondaries and (due to induced eddy currents) effects the overall phase shift seen

in the secondary outputs. Because of joining and hermetic seal requirements, however, titanium

was chosen as a compromise material for the bore liner.

The moving ferromagnetic core is supported on a nonmagnetic shaft that is, in turn, attached to one

of the refrigerator motor armatures. If the core itself is a cylinder with "square" ends, local saturation

may occur at these end edges. The higher levels of flux entering the end faces of the core rod wil

reduce the linear range available from a given LVDT. In the case of operation at 100 kI-Iz, the

titanium supporting rod effectively becomes a partial magnetic shield (due to eddy currents and the

associated skin effects) to the one end of the nickel-iron core. In addition to reducing the flux

entering the end of the core, the eddy currents induced in the titanium itself add phase shift to the

secondary output signals. To maintain as much as practical this eddy current and shielding

symmetry, a short titanium stub was included at the opposite end of the supporting shaft.

Heat treatment and mechanidal finish are now important for optimal LVDT performance. The skin

depth of nickel-iron at the 100 kHz operating frequency is shallow (.01 ram) and perturbations in
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the surface finish could result in degraded performance; at 100 kHz much of the permeability (cross

section) of the core may be lost. Additionally, if this permeability (in the "skin" of the core) is
some non-linear function of the local field strength, the core itself may generate harmonics of the
primary frequency.

The overall differential voltage output of the LVDT secondaries is not determined solely from the

numbers of turns, but is a complex function of the various LVDT impedances. At higher

frequencies, the phase shifts associated with interwinding capacitances and eddy currents must be
considered.

7.3.4 Electronics Signal Conditioning Circuit

Commercial LVDT signal conditioning electronics generally operate at frequencies below 50 kHz.

It was necessary, therefore, to develop circuits to allow operation at 100 kHz. The circuit was

assembled from readily available components consistent with the stability and frequency response

requirements. A description of the electronics used in the test and development phases of the LVDT

design follows. Figure 7-10 is a block diagram of the circuit. The LVDT primary and secondaries

are shown schematically on the left of the diagram. The remainder of the diagram outlines the

electronics used to convert the ac outputs of the LVDT secondaries to a dc voltage level representing
the position of the core.

-_ BUFFERS
100 KHZ.

- l IOKHZ.

_ FILTER @-

.._ DIFF. AMP OSC.100 KHZ.

I PHASE

Figure 7-10. Block diagram showing LVDT and associated signal-conditioning
electronics. Core is shown slightly off-center and resulting waveforms are illustrated

for various points in circuit.

m

(1) Oscillator-Driver

The oscillator is a eommereiaUy available CMOS crystal-controlled, square wave generator. This

is followed by a seven-pole passive filter yielding a stable output sinewave at 100 kHz with harmonic

7-10



attenuationmeasuredat -55 dB or better. Because of the filter sections used in the circuit and the

generation of harmonics within the LVDT itself, good frequency stability is required to prevent the

signal amplitude change that would result from a drift in operating frequency. Harmonic attenuation

is necessary as conditions for the balance (null output) of the LVDT may not be the same for the

harmonics as it is for the fundamental. Rather than using feedback methods, low amplitude drift is

achieved by powering the entire circuit with precision voltage regulators. Amplitude stability is

then principally a function of component thermal drift with temperature. Low-drift passive

components are used throughout the circuit.

The sinusoidal signal thus generated was then applied to the single input of an amplifier with a

differential output. The LVDT primary is connected across the two outputs of this amplifier. This

differential drive method is used here because the conditions for precise balance (that is, symmetry

in the output of secondaries) preclude the need for a voltage and flux balance across the secondaries.

From Figure 7-10 it can be seen that a balanced differential voltage input to the primary will result

in an essentially zero voltage node at the center of the primary coil. The two secondaries now see

identical magnetic fields (magnetically coupled, due to the flux from the primary) and identical

electrostatic fields (capacitively coupled, due to the voltage gradients in the primary). With the

proper gain and offset adjustments made, a nearly zero output voltage can be obtained from the

LVDT with its core in the mechanical center position.

(2) Phase Shifter

A second output from the oscillator is fed into a unity-gain phase shifting circuit. This phase shifter

and its associated buffer provide the "carder" (i.e., reference) drive for the synchronous demodula-

tor. The phase shift is required in order to match (synchronize with) the phase shift resulting from

the mutual inductance between the LVDT primary and secondaries. Due to the low coupling factor,

a minimal change in total (i.e., combined secondary) phase shift is seen with an axial change in the

LVDT core position. Once the phase adjustment has been set, it is adequate for all core positions

within the linear range of the LVDT. A switch within this section permits the choice of either a

lead or a lag in phase, allowing the polarity of the dc output of the electronics to be changed.

(3) Secondary Inputs

The outputs from each of the LVDT secondaries are separately brought (through miniature coaxial

cables) to identical high-impedance input buffers. Both secondary voltages are routed to the

electronics so as to be able to adjust individually the output from each of these windings. These

adjustments are used to achieve both gain and phase balance between the two secondary outputs

when the core is at center position.

The outputs of the two buffers feed a subtractor whose output is now the difference between the

two inputs (i.e., the LVDT secondaries). In addition to the capacitive trimmers at each buffer input,

an adjustment is included in this section of the circuit to allow matching of the gains of the two

secondary winding/buffer input paths. From here, the signal is sent through a bandpass filter

centered at 1130 kHz. The filter attenuates both the higher frequency harmonics of the 100 kHz

carrier (that may have been generated within the LVDT) and the low frequency components (e.g.,

60 Hz) that could result from the environment or background. The filter bandwidth (skirt)

frequencies are set at approximately 80 kHz and 120 kHz, respectively. This bandpass width is

adequate to allow passage, without significant amplitude attenuation or phase shift, of the position

information contained in the modulation components present on the 100 kHz carder.
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(4) Synchronous Demodulator and DC Output

The synchronous demodulator is useful to several hundred kilohertz; the unity gain bandwidth is

specified as 2 MHz. The circuit functions essentially as a multiplier, the output being the product

of the carrier reference signal (from the oscillator) and the difference signal (from the LVDT

secondaries). The output of the demodulator is, therefore, the absolute value of the measured input

(i.e., the difference between the _ondaries) with the output sign (or polarity) determined by the

phase of the combined secondary input signals. This output is filtered by a third order, low-pass

active network with poles at approximately 10 kHz. A final amplifier stage includes the necessary
adjustments to trirn both the gain and offset of the dc output signal.

7.4 Reference Waveform Generator

A digital-analog waveform generator provides axial command sinusoids for the displacer and piston

motion control subsystems. Through this, the System Controller can program the system operating

frequency, piston and displacer stroke amplitudes and relative phase (piston lags displacer). A

block diagram of the reference generator is shown in Figure 7-11. Performance specifications for
the circuit are listed in Table 7-1.

TABLE 7-1. Axial Reference Generator Performance.

Parameter Range Resolution

Frequency 15 - 30 Hz < 0.2 Hz

Relative Phase 0 - 90" 0.3"

Piston Stroke 0 - 100% Full Scale < 0.5% FS

Displacer Stroke 0 - 100% Full Scale < 0.5% FS

A crystal tirnebase output is passed through a programmable divider circuit to provide scaling for
the operating frequency. The scaled clock signal drives a binary counter, the output of which is

used to address the sinewave data memories (PROM).

Each identical PROM contains 1024 8-bit values which comprise amplitude data for one complete

sinusoidal cycle. As the address values are sequentially selected at the input, the output amplitude

data is presented to a digital-to-analog converter. A low-distortion analog sinusoid appears at the
output of each converter.

Address values for one of the PROMS are offset via a full adder circuit to provide a relative phase

shift in the two sinusoidal outputs. The amount of offset (phase) can be programmed by the System
Controller.

Each analog sinusoid is passed through a multiplying digital-to-analog converter to provide

amplitude scaling. By scaling the 8 bit resolution sinusoids in an analog (rather than digital) fashion,
distortion due to quantizadon error is avoided.

A four-pole, low-pass filter (f¢ - 100 Hz) follows the amplitude scaling stage to remove any

discontinuities in the sinusoidal reference waveform which arise from the digital processing. (The

worst case transients appear when changing the amplitude scaling - they could also be minimized
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Figure 7-l 1. Block diagram of Axial Reference Generator.

by changing as the value of the input waveform is at a minimum, but this is a more complex solution.)

Because the two f'dters are identical, phase shift ( 10" at 20 Hz) applied to each channel is the same,

and the relative phase of the output waveforms remains as programmed.

Full scale gain and dc offset adjustments are included in the output stages for each waveform circuit.

These are set during initial calibration.

7.5 Counterbalancin s

Axial cooler vibrations are minimized by driving the counterbalance mass in opposition to the

inertial forces produced by the piston and displacer shafts. Mechanical adjustment of the counter-

balance housing, relative to the piston/displacer housing allows the two motion systems to be aligned

co-linearly to minimize any introduction of radial vibrations.

A simple circuit (Fig. 7-12), located within the counterbalance driver, scales the piston and displacer

position outputs (according to their masses relative to the counterbalance mass) and sums the two

to create a command signal for the counterbalance. Trimpots on the circuit card permit the scaling

to be adjusted while the system is running. Provisions for phase shifting each of the input signals

accommodate feed-forward to compensate for closed-loop phase response errors in the counterbal-

ance position control loop, once the residual frequency components of vibration have been
identified.
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Figure 7-12. Block diagram of counterbalance command circuit.

The calibration of the LVDT signals, in particular their polarity with respect to actual motion, is

critical fo,- the function of the system. Both the piston and displacer LVDT outputs are positive-

going as me shafts move toward the cold end of the cooler. The counterbalance LVDT output is
positive going as the shaft moves away from the cold end.

The cooler is equipped with an axial accelerometer, located at the counterbalance end, to provide

quantitative measurement during test. The output of the accelerometer was observed on an

oscilloscope. The accelerations induced by the piston motor dominate the net vibration spectrum,

so it was first necessary to operate the displacer motor alone (piston amplitude set to zero, displacer

to design stroke), then slowly increase the weighting of the displacer command to the counterbalance

(via the trimpot) while observing the accelerometer output. The trimpot is tuned to minimize peak
excursions viewed on the scope.

The system was then operated with the piston operating at 20% full stroke (displacer at design
stroke), and similar tuning of the piston weighting was completed. The piston stroke was h3__ased

to design stroke, and the system was permitted to cool and stabilize its operating conditions before

making f'mal adjustments of the weighting values. It is interesting to note that the minimum

accelerometer output can be attained by tuning the system while placing one hand on the cooler.
The tactile sense is more sensitive than the instrumentation.

m
m

=

_=
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8. SYSTEM CONTROL AND INSTRUMENTATION

The electronic systems required support the cooler operation are shown in the block diagram of

Figure 8-1. The cooler electronics are housed in a separate enclosure and interconnected to the

cooler cradle assembly (not shown) through detachable umbilical cables. AC power from the utility

line is backed up by an uninterruptible power system, then converted to dc power required for system

operation. Axial and radial subsystems and cooler instrumentation are coordinated by the System

Controller which acts as an intelligent interface for the operation of the cooler. The following

section describes the support systems which are not covered by the sections which detail essential
motion control.

AXIAL

REFERENCE
GENERATOR

RS 232

(REMOTE)_ SYSTEM
CONTROLLER

INTERLOCK

FRONT I_ _t

PANEL _ DIGITAL 1/O

' I

I

COUNTERBALANCE
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i
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C'BAL RADIAL P4
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D.C. POWER

BATTERIES
120 MAC UPS

50-60Hz IO

_COOLER

Figure 8-1. Block diagram of cooler electronic system.

8.1 System Controller

The System Controller is a microprocessor-based system which provides an orderly sequence of

operation on both start-up and shutdown, monitors interlocks, responds to faults, and provides an

interface through which the user can command or monitor operation (see Fig. 8-2). The interface

operates on two levels: a local mode which provides simplistic control of the essential cooler

function; and a remote mode in which a desktop computer (and software) provides an extended

command set and displays detailed status information.
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Figure 8-2. Block diagram cooler system controller.

8.1.1 Hardware Description

The System Controller uses the popular STD Bus and a mixture of commercial and custom circuit

boards to implement the functions of the cooler system. A Motorola 6809 based microcomputer
board contains the system processor, the associated hardware reset switch, the ROM based

executable code, and the serial communications port. The STD Bus interface ties it into a

commercial digital input/output board, a commercial analog input/output board, the axial command

reference generator (described in Sect. 7.4), and the bearing interlock (described in Sect. 8.5).

The digital I/O circuit contains four 16-bit ports which operate in a mixed mode (each port has 8

input bits and 8 output bits) mapped as memory. The current status of the output bits in each port

can be read back by the processor. The I/O ports support the front panel interface, power supply
control and status, motor driver control and status, and bearing control and external interlock status.

The analog I/O board contains a multiplexed analog-to-digital converter (presently using 8 of 16

single-ended input channels) with 10 bit resolution, which monitor various run time parameters.

Two 8-bit digital-to-analog converters support heater power control and the front-panel temperature
readout.
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Includedon thebearinginterlockcircuit cardisa 100Hzclockcircuitwhichactivatestheprocessor
Non-Maskable-Interrupt.This is usedasbotha generalpurposetiming sourceanda 'watchdog
timer' capableof forcing asystemrecoveryin theeventof asoftwareexecutionfault.

8.1.2 Software Description

The software description is presented in a top down approach, with high level functioning described

first, followed by the local and remote command function subroutines, and finally brief descriptions

of the specific task subroutines.

(1) Main Program

Figure 8-3 is a simplified flow chart of the fundamental software execution.

INITIALIZE 4

ON / OFF ? --cl_-_

REMOTE / LOCAL "_ --toc_--

LOOK FOR INCOMING

COMMAND

RESET ? --y.-.l,-_

STANDBY ? --Y-,-,ll,,,-,_

RUN ? -- y"_ll_

CHANGE ? --y'--ll"_

STATUS ? --Y.-.-l,--

FUNCTION

SUBROUTINE

SEND MESSAGE TO

I_EMOTE CON"tROLLER

:J
PE RFOP_ MEASUREMENTS ANO

MONITOR SUBSYSTEMS

UPDATE FRONT PANEL

DISPLAY

_ J

READ FRONT PANEL

PUSHBUT'FONS

RESET 7,-- Y"--I"_

STANDBY 9 --Y-_ll_

RUN ? --y.--.l.--

FUNCTE)N

SUBROUTINE

INTE_PT SOURCES

I(_0 HZ CLOCK _NMI)

BEARING INTERLOCK (FIRQ}

CO4t41UN_ATWDN5 (1!_}1

Figure 8-3. Flowchart of fundamental software execution.
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An initialization routine checks the status of critical subsystems and will prevent startup if faults

are detected. Error codes are presented on the front panel INTERLOCK STATUS display.

The key switch is tested. If it is OFF, then the system simply loops and rechecks status. If the key

switch is in LOCAL or REMOTE and system is ready, the front panel RESET button will light,
indicating that dc power is on and that the magnetic beating systems are active.

If the LOCAL mode has been selected, then the front panel pushbutton status is tested, and the

appropriate command routine is entered, if selected. From RESET, one may only proceed to the
STANDBY (launch) mode, in which the axial drives are activated and commanded to maintain

'center' position. (The sequence interlocking is omitted from the flowchart for clarity.)

Cooling is initiated by proceeding to the RUN mode. The axial frequency and phase angle are

established, and then the piston and displacer amplitudes are gradually increased to the final

operating point (65"K 5W). Operation will continue unless the system is commanded to return to

the STANDBY or RESET mode, or if it is forced to the RESET mode by the interlock system.

In the REMOTE mode, commands are received via the RS-232 serial communications port. In

addition to activating the three basic operating modes, the remote command set includes functions

which can modify the axial operating conditions or report on the cooler system status. This permits

more sophisticated control of the cooler system, via the remote control software, as may be required
to attain various operating points for parametric testing or in the target application. Each REMOTE

command generates a reply at the serial communications port, to acknowledge the command or

return requested status information.

Once a particular operating mode has been entered, and no further commands are encountered, the

program simply loops and performs the following tasks:

• Watchdog timer is reset to prevent a forced return to the RESET mode.

• Power supplies are checked for faults. (PWRFLT)

• Axial drivers are checked for faults. (AXCHK)

• Analog instrumentation readings are checked and stored in a memory buffer area .(ANALOG)

• Ancilliary interlocks are checked. (ANCLRY)

• Front panel displays (including the INTERLOCK STATUS) are updated. (DSPLAY)

• System checks for new commands from the LOCAL or REMOTE source.

Interrupt sources

Under certain conditions, the main program will be interrupted to attend to more urgent tasks.

Operation generally returns to the main loop once the interrupting task has been completed.

The Non-Maskable-Interrupt (NMI) is generated by the hardware derived 100 I-Iz clock. This

routine first tests the status of the front panel RESET pushbutton, providing the local operator

capability to override any task in progress (whether LOCAL or REMOTE), with minimal delay.

The routine then decrements a general purpose variable, used to generate timing delays throughout

the program. When the watchdog timer is active (always, except during initialization and in the

event of a forced system shutdown), the watchdog timer parameter is decremented and tested for

zero value. If it reaches zero, the system is forced to the RESET mode and the INTERLOCK

STATUS display indicates the system time, out fault code (700).
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The beating interlock hardware can activate the Fast Interrupt Request (FIRQ), which calls the

interrupt service routine (BERINT). This routine determines the severity of a bearing fault and, if

warranted, will take action to remove the fault source. A more detailed description of the bearing

interlock is given in Section 8.5.

The serial communications device, when enabled, will generate an Interrupt Request (IRQ)

whenever the transmitter register has completed a byte transmission or whenever the receiver

register has been filled. The communications service routine (COMINT) determines which event

has occurred and steers software execution to the appropriate handier subroutine (WRTOUT or

READrN).

(2) Command Functions

The command function routines are briefly described in text and flowchart forms (see Figs. 8-4

through 8-10). Each REMOTE command elicits a reply from the System Controller. Some

commands require parameter information to be included with the command transmission, while

others obtain status information with the reply. Program execution returns to the main control loop

after completion of the command task.

The RESET routine disables the axial drivers, disables the cold finger heat load and clears the front

panel interlock status display.

CLEAR STATUS, INDICATE RESET

SHUT DOWN AXIAL DRIVERS

DISABLE COLD FINGER HEAT LOAD

RETURN

Figure 8-4. RESET flowchart.
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The STANDBY routine activates the axial driver subsystems and brings the axial commands to zero

(or 'center') position. If the system was running, the amplitudes are incrementally decreased to

zero. During this transition time, both the RUN and STANDBY pushbuttons will be illuminated.

(The RESET and STANDBY will be illuminated during that transition also, but it is generally too

brief to be visually detected.)

INDICATE RUN/STANOB¥ OR

RESET'STANDBY

RETURN SYSTEM AMPLITUDES TO ZERO

CLEAR litre NLOP.JKST_,TIJ_,iNQICATE ST EL_II_Y

OVERRIO_ AXIAL INTERLOCKS

ENABLE AXIAL DRWERS

WAft 5 SE_S

ENAJBLE AXIAL INTERLOCKS

D_SPLA¥ _NTEALOCK 5"_FA?L_3

DRIVER _rAULT ? --YES_

I
N_

"LOOP EXITS VIA WATCHDOG TIMER

CLEAR _NTERLOCK STATLkS

RETtJ_

Figure 8-5. STANDBY flowchart.

The INTERLOCK STATUS will be cleared and the axial driver interlocks overridden for 5 seconds.

This should provide sufficient time for the axial shaft positions to come to center if they were not

previously there (i.e., on initial startup), ff the drives do not reach center, then the interlocks will

detect and report the offending axial system upon their reactivation. The standby routine will loop

back and try again to center the shafts. This process continue until the shafts attain center (and the

routine exits normally) or the watchdog timer forces the system back to the RESET mode. (If this

happens, one can manually attempt to re-enter the STANDBY mode.)

The RUN routine first illuminates the RUN pushbutton, indicating that the system is going toward

or has attained the final operating position. The routine then copies the default axial parameters

(frequency, phase, amplitude) from the program ROM to a RAM buffer area. The proscribed

operating point is attained incrementally by the CHGFRQ, CHGPHZ and CHGAMP routines. The

order of these routines ensures that the axial motions will always provide cooling (rather than

heating) at the cold finger. =
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The routine exits when the final operating point has been reached.

CLEAR INTERLOCK STATUS, INDICATE RUN

TRANSFER DEFAULT PARAMETERS
TO INPUT BUFFER AREA

I c_,_ J

RETURN

Figure 8-6. RUN flowchart.

RETURN

Figure 8-7. CHANGE flowchart.
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TRANSFER FRONT PANEL STATUS PARAMETERS
TO OUTPUT BUFFER

,l
POWER SUPPLY STATUS TO OUTPUT BUFFER

l
ANCILLIARY INTERLOCK STATUS TO

OUTPUT BUFFER

BEARING THRESHOLD TO OUTPUT BUFFER

AXIAL DRIVER STATUS TO OUTPUT BUFFER

,L
RETURN

Figure 8-8. REPORT SYSTEM STATUS flowchart.

REPORT RADIAL 1STATUS

DISABLE INTERRUPTS

READ 12 BEARING MAGNITUDES

L
RE ENABLE INTERRUPTS

TRANSFER MAGNITUDE READINGS
TO OUTPUT BUFFER

L
RETURN

Figure 8-9. REPORT RADIAL STATUS flowchart.

F

L
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The CHANGE routine is a REMOTE commandwhich utilizes the CHGFRQ,CHGPHZ and
CHGAMP subroutinesto attaina new axial operatingbasedon parametersincluded with the
commandtransmission. In practicaloperation,only the pistonamplitudewill be varied,asthis
proportionallyregulatesthecoldproduction.

IREPORT ANALOG

PARAMETERS 1

READ A-D CHANNELSTORE VALUE IN RAM

NEXT CHANNEL

LAST CHANNEL ? _"

TRANSFER READINGS TO

OUTPUT BUFFER

RETURN

_ Y E S'-'-II_ REPORT ANALOG

WARNING

)

Figure 8-10. REPORT ANALOG PARAMETERS flowchart.

REPORT SYSTEM STATUS transfers current run time status information to the RAM output

buffer for subsequent transmission to the remote control computer.

REPORT RADIAL STATUS reads and stores current (instantaneous) radial bearing magnitudes

(12 readings) to the output buffer area for subsequent transmission to the remote control computer.

REPORT ANALOG PARAMETERS reads and stores current (instantaneous) analog scanner (14

readings) to the output buffer area for subsequent transmission to the remote control computer.

SET HEATER CONTROLLER programs the cold finger heat load power (in WATTS) based on a

parameter included with the command transmission. If the programmed value is zero, then the

heater output is physically disabled (see Sect. 8.4).

(3) Task Subroutines

The individual task subroutines used by the main program and command routines are described

here briefly. The specifics of their implementation are highly dependent on the hardware configu-

ration and may be determined from the annotated software listing in conjunction with the electrical
schematics.
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INIT
AXRSET
CHKAX
CI-ICFRQ
CHGPHZ

CHGAMP

PWRFLT

BRGINI

BERINT

BRSTAT

DSPLAY

PNLTST

ANALOG

ANCLRY

DLA500

DLA100

INCOMM

READIN

WRTOUT

COMINT

NMI

SWI

initialize System Controller

reset axial drivers

read axial driver status

change axial reference frequency

change axial reference phase

change axial reference amplitude(s)

determine power supply fault

initiate bearing interlock

interpret bearing interlock fault (FIRQ)

measure bearing error magnitudes

update front panel displays

lamp test

read instrumentation parameters, update temperature readout

read ancilliary interlock status

5 second software delay

100 millisecond software delay
initialize communications hardware

read incoming command message

write outgoing reply message

interpret communications request (IRQ)

Non-Maskable Interrupt service

SoftWare Interrupt (used to return from fault conditions)

8.2 Power Supplies

The power conditioning system is designed for maximum reliability to maintain the operation of

the magnetic bearing system and protect the cooler from mechanical damage. An uninterruptible

power system (UPS) provides conditioned 120 Vac, 60 Hz, single phase power to the cooler power

supply system. The UPS uses normal 120 Vac facility power. In the event of a facility power

failure, the UPS will continue to supply ac power to the cooler system, without interruption or

degradation, drawing energy from a battery reserve. The System Controller monitors the status of

the UPS and will shut down cooler operation, in a controlled fashion, prior to the loss of battery
reserve, in the event of a prolonged power outage.

The cooler electronics and axial and radial drive systems are sustained by the de power supplies,

which are integrated into a single chassis. The required dc voltages are derived using commercial

switchmode power supplies, for maximum conversion efficiency. Each voltage is supplied from

parallel, redundant subsystems so that voltage is maintained with an individual failure. The System

Controller monitors power supply status, and takes appropriate action to protect the cooler

mechanism in the event of a power subsystem failure. A block diagram of the power supply system
is shown in Figure 8-11.

8.2.1 DC Supplies

28 Vdc power is used to operate the axial and radial position control systems, with the majority of

the power required for driving the piston. A system of three 28 V power supplies, which operate

from the 120 V source, are paralleled via power rectifiers to a common capacitor bank. The

regulated voltage outputs of each supply are carefully adjusted to promote current sharing while all

three are in operation. The diode coupling will isolate a failed power supply and prevent it pulling

down the rest of the system. The capacitor bank provides some output filtering for improved
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Figure 8-11. Block diagram of power supply system.

transient response, and has enough capacity to prevent an overvoltage condition which could arise

from regenerative power produced in the axial motion systems.

Positive and negative 15 Vdc power is used by the signal conditioning circuitry of the axial and

radial control systems, as well as for cooler system instrumentation. 5 Vdc is required by the System

Controller and associated logic interface circuitry. These dc sources are provided by two multiple

output power converters, which are designed for redundant mode operation. Key features include
diode isolation and interactive voltage regulation to ensure current sharing.

The combined dc power supply outputs are fused at the rear of the power supply chassis. This is

especially important with a power system which is designed NOT to fail, to prevent a fire in the

event of a catastrophic circuit failure (i.e., short circuit due to human error). Specifications for the
power supply system are listed in Table 8-1.
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TABLE 8-1. Power Supply Specifications.

Uninterruptible Power System (UPS):

96 - 132 Vac 120 Vac + 2%
57 - 63 Hz 60 Hz

6 kVA 3 kVA

Comment

Single phase

Battery:

72 V 3.6 kVA

120 Vac
Lead acid type, 5 minutes
duration

DC Power Supplies:

(3) 28 Vdc + 0.3%, 13.7 A

(3) 15 Vdc +0.5%, 3 A

(3) -15 Vdc + 0.5%, 3 A

(2) 5 Vdc + 0.5%, 30 A

Similar voltage outputs are
paralleled using diode
isolation. Active current

sharing on all but the 28

volt supplies. Output currents
rated at 50"C ambient.

8.2.2 Logic Interface

An isolated logic interface permits the System Controller to monitor the status of the power supply
system and to enable or disable the 28 Vdc supply output.

The UPS has a relay isolated 'summary output' which will indicate any condition that impedes

continued operation of the system (loss of input power, battery over/undervoltage or UPS circuit
failure).

The 28 Vdc supplies are optically isolated from logic circuitry which can report a warning (loss of

single supply) or failure (loss of two or more outputs) to the System Controller. An optically

isolated enable circuit permits the System Controller to hold the power off during system initializa-

tion and to shut down in the event of a severe subsystem failure.

The tWO 5 V supplies have optically isolated fault outputs which are presented separately at the
interface.

Summary fault signals are presented at the interface for both the positive and negative 15 V, each

of which is comprised of three paralleled supplies. Optically isolated, open collector fault outputs

are wire OR'ed together to indicate a fault if any one of the three should fail.

The System Controller response to power supply faults is discussed in Section 8.5.
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8.3 Instrumentation

Temperature and pressure measurements obtained from instrumentation attached to the cooler are

read into the System Controller where they axe used for interlocking or available for performance

testing. This section describes the instrumentation and related signal conditioner(s).

8.3.1 Cold Finger Temperature

The cold finger temperature is monitored by two (for redundancy) calibrated silicon diode sensors

installed into opposite sides of the cold plate and secured with thermal epoxy. A four-wire

measurement system excites the diode with a precision 10 microampere dc forward current, while

accurately reading the diode forward voltage drop (which increases with decreasing temperature).

The forward voltage reading is amplified and passed on to the System Controller analog-to-digital

converter for subsequent interpretation and display.

The diode exhibits an approximately linear Vf vs. temperature over the range of 300 to 40"K. Precise

measurement must be interpreted via a calibration table supplied by the diode manufacturer.

The System Controller uses one of the diode readings to index a ROM look-up table (based on linear

interpolation between points given in the manufacturer's data sheet) which provides corrected

numeric data for output to the front panel COLD TEMPERATURE display. This display is accurate

tO I'K over the 300 to 20°K range. The amplified outputs of the signal conditioner are also available

to the remote control computer with improved resolution, and can be reliably interpreted to within
0.5"K.

8.3.2 Housing Temperature

The cooler is outfitted with platinum-resistance temperature detectors (RTD) at key locations on

the motor housing. The System Controller monitors three housing temperatures of particular

interest: the displacer motor/heat exchanger area (where heat of compression is removed); the piston

motor winding area (maximum electrical input power); and the counterbalance motor winding area.

The signal conditioning circuits for the RTD uses a 4 wire measurement technique with a 1 mA dc

excitation. Voltage drop is measured and amplified (scaled) to provide good resolution in the range

of 0 to 100"C. The amplified reading is passed on to the System Controller analog-to-digital

converter. The information is used as part of the interlock system and is also available via the remote

control computer.

8.3.3 Housing Pressure

The cooler internal pressure is monitored at three locations: the compression side of the piston

(working volume), the buffer side of the piston, and in the counterbalance housing. The pressure

transducers use a strain-gage element as part of a bridge circuit (with temperature compensation)

to provide a basically self-contained measurement device. The 15 Vdc supply powers the bridge

circuit, and the output is scaled by the differential amplifier of the signal conditioning circuitry to

provide good resolution through the System Controller analog-to-digital converter. The readings

obtained by the analog-to-digital converter are instantaneous values, while the actual gas pressures

are dynamic. The digitally obtained data may be used to determine extreme or average values (as

required for interlocking). The continuous analog outputs of the pressure transducer amplifiers are

available at the front edge of the signal conditioner circuit card to accommodate parametric testing.
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8.4 Heat Load

A resistive heater element is attached to the cold plate surface to provide a test load for evaluating

cooler performance. A closed-loop control system maintains a constant programmed power

dissipation in the heater element, even as the resistance varies with cold finger temperature (see Fig.
8-12).

COLDF,NGER [OVERTEMP.I
TEMPERATURE SENSE

HEATER
ENABLE

POWER tt"

COMMAND -k,,

MEASURED
POWER

COMPENSATOR

II j
I ISENSE

CURRENT URN
SENSE

1

HEATER
ELEMENT

Figure 8-12. Block diagram of heater controller.

A four-wire system supplies regulated current to the heater element and accurately measures the

voltage drop across the element terminals. The controller circuitry multiplies the regulated current

and measured voltage to determine the instantaneous power. The measured power is compared to -

the command input to establish an error. The error is amplified and compensated to regulate the

output current in a stable fashion to maintain constant heater power.

A relay placed between the current source and the heater element can ensm'e zero power into the

heater element. Closure of this relay to enable the heater requires two conditions. The System

Controller must set the heater controller enable input and the cold finger temperature must be below

a preset level. The first condition is met anytime the System Controller demands a power output
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of morethanzero watts. The second condition is provided by a comparison circuit on the heater

controller board. An adjustment trimpot is preset to prevent heater operation above 150"K.

Note that the heater can only be enabled through the remote control interface, which provides both

programming of the power level and readback of the measured power. The heater is automatically

disabled whenever the system enters the RESET mode of operation.

8.5 Interlocks

The interlock system consists of both hardware and software devices for protecting the cooler

mechanism. The interlock system recognizes two types of faults. Warnings axe issued for faults

which should eventually be attended to. Failures arise from faults which can damage the cooler
mechanism and thus warrant some protective response from the System Controller. Table 8-2 lists

valid INTERLOCK STATUS codes and their meaning. Codes beginning with an even number

indicate a warning, while codes beginning with an odd number indicate a failure. The remainder

of this section describes the interlock fault conditions and the System Controller response with

respect to the individual subsystems.

8.5.1 Power Supplies

Power supply status is tested twice during the initialization procedures following a hard (processor)

reset. At the f'trst pass, all supplies, except the 28 Vdc should be active. The second pass rechecks

status after the 28 Vdc has been activated. If any faults are detected, the INTERLOCK STATUS

display will register the appropriate warning or failure code and the system will not enter the RESET
mode.

Loss of any of one of the redundant dc supply components will be reported as a warning to the

INTERLOCK DISPLAY. The system will continue to operate normally, assuming that the backup

supplies are operating. The error should be attended to as soon as it is practically possible. A loss

of two of the three 28 Vdc supplies will force a system shutdown. The 28 Vdc fail code will appear
at the INTERLOCK DISPLAY.

A UPS fault should only be generated in the event of a facility power failure, assuming that the UPS

itself is functioning correctly. Upon detecting a UPS fault, a warning is issued to the INTERLOCK

STATUS display and a timer is initiated to begin a delayed system shutdown, based on power drain

for full output operation and battery capacity. If power is restored prior to shutdown, the countdown

will be aborted and normal operation will continue. If not, the system will shut down and the UPS
fail code will be displayed.

Recovery from a system shutdown due to a power supply failure requires a hardware reset. The

system will not re-initialize unless the offending circuit has been corrected.

8.5.2 Axial Drivers

Each of thethreemotor drivers has three interlock devices, any of which can disable that amplifier

(see Sect. 7.2). During normal operation, the status of the amplifier command is tested during each

pass of the main program loop. If the system is in the STANDBY or RUN mode, the amplifiers
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TABLE 8-2. Valid Interlock Status Codes.

Fault Code

001
002
003
0O4
005

200
201
202
203
204
204
206
207
208
209
2 10
211

5 lX
5 2X
5 3X

700

8OO
801
8O2
8O3
8O4
8 05
8O6
807
808

900
901
902
9 03
904
9 05
906
9O7

Identifier

UPS warning
28 V p.s. warning
5 V p.s. warning
15 V p.s. warning
-15 V p.s. warning

Fault

I 01
102

Piston X-front bearing warning 3 00
Piston Y-front bearing warning 3 01
Piston X-rear bearing warning 3 02
Piston Y-rear bearing warning 3 03
Displacer X-front bearing warning 3 04
Displacer Y-front bearing warning 3 05
Displacer X-rear bearing warning 3 06
Displacer Y-rear bearing warning 3 07
C'balance X-front bearing warning 3 08
C'balance Y-front bearing warning 3 09
C'l_lance X-front bearing warning 3 10
C'balance Y-rear bearing warning 3 I 1

Displacer axial fault
Piston axial fault
C'balance axial fault

Watchdog timeout (system forced to RESET mode)

Cryo temperature I parameter over or under limits
Cryo temperature 2 set in program ROM
Displacer housing temperature
Piston housing temperature
Spare temperature
C'balance housing temperature
Piston housing pressure file)
¢'t aance pressure0'r)
Heater power

Reserved radial bearing LED current fault
Reserved LVDT oscillator fault
not used
External interlock
External interlock
External interlock
External interlock
External interlock

Identifier

UPS failure
28 V p.s. failure

Bearing failure
Bearing failure
Bearing failure
Bearing failure
Bearing failure
Bearing failure
Bearing failure
Bearing failure
Bearing failure
Bearing failure
Bearing failure
Bearing failure

X is a binary weighted value:
1 = amplifier disabled
2 = servo loop error
4 = ovetstroke error

channels 9-15 are available
for expansion

cabinet over-temperature
coolant flow loss

spare
spare
spare

Note: Odd-valued FAULT CODES will result in RESET or shutdown.
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will be enabled. A serial poll of each of the amplifiers tests the status of all three fault flags. Any

fault will force the system to the RESET mode, disabling all of the axial drivers. The exception to

this is during the transition from RESET to STANDBY mode, when the axial interlocks are

overridden (Sect. 8.1.2-2).

The INTERLOCK STATUS display will show an axial driver failure code, indicating the source

and specific nature of the fault. Note that it is possible for the code to reflect multiple faults.

8.5.3 Watchdo_ Timer

The watchdog timer, activated during system initialization, will force the system to the RESET

mode if the software execution does not include a watchdog timer parameter reset. The timer

parameter is decremented during the NMI service routine, which must occur so long as the processor

and timer circuits are working.

Most of the executable code includes provisions for maintaining the timer parameter, so the error

should never occur in normal program flow. The exception to this is during the transition from

RESET to STANDBY mode, where the watchdog is utilized provide an exit if the process takes

longer than expected.

The watchdog timer is disabled if another fault forces the system shutdown, so that the interlock

display will reflect the cause of the system shutdown rather than a rime.out indication.

8.5.4 Analog Parameters

During a read of the analog scanner, which takes place upon each pass of the main program loop,

each scanner parameter is compared to a predetermined high and low limit, stored in the program

ROM. A warning code is issued if any of the parameters is outside of the limits. The code identifies

the offending channel.

The warning may or may not be trivial, depending upon environmental conditions. Therefore, the

system does not necessarily take any corrective action to alleviate the symptom. It is recommended

that the operator be aware of any analog parameter warning and decide what action to take or that

the remote control system possess the ability to make such a decision.

8.5.5 Bearing Interlock

The beating interlock is probably the most critical subsystem of the cooler, since a shaft touchdown

(while the shafts are in motion) will result in damage to the clean metal surfaces. Even minor damage

in the clearance seal areas can render the cooler useless and require disassembly for repair.

The bearing interlock is comprised of two parts: the bearing monitor, which is the hardware portion,

and the interlock software. The software provides flexibility by screening the monitor output to

discriminate between transients and genuine faults. If a detected fault magnitude is below a preset

critical limit, the sensitivity of the monitor is reduced to permit continued operation.

The bearing monitor circuit is designed to operate as a free running scanner which will alert the

System Controller processor via the Fast Interrupt Request (FIRQ) whenever a reading is out of

tolerance. This provides continuous observation of the bearing errors and minimizes the software

overhead for the System Controller processor.
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(1) Circuit Description

The block diagram of Figure 8-13 shows the essential components of the monitor circuit The

signals on the left side represent the interface to the system processor. The bearing error signals

enter the circuit via the multiplexer on the upper right. Error outputs from the bearing control circuits

are sequentially selected by the analog multiplexer for presentation to the window comparator

circuit. A presettable counter circuit scans the multiplexer at 10 microseconds per channel, viewing

all 12 channels in 120 ItS. An 8 bit digital-to-analog converter determines the magnitude at which

the window comparator will generate a fault signal.

DATA BUS

FIRQ

ADDRESS
BUS

E CLOCK

___ STATUS

BUFFER

ADDRESS

L DECODE

"1 +10

MAGNITUDE I

COMPARATOR

_1
I FAULT

LATCH

CLR

__J

_

TEST

/

CLEAR

FAULT

COUNT

l-l CLOCK
SELECT
LOG_

IN 1_

OUT IN 2 _ I
i

IN 3 "'-_-- _.

ANALOGMuxR............ J
IN16

SELECT

PRESET

4
COUNTER

BEARING
ERROR
SIGNALS

Figure 8-13. Block diagram of bearing monitor.

The occurrence of a fault will halt the scanner at the offending channel and alert the system processor

via the FIRQ signal. The bearing interlock software can then detemaine the status of the interlock

(read channel number, TEST and FAULT) and the magnitude of the fault (reprogram the D-A until
TEST is clear).

The system processor can also write to the interface to produce a pulse on the COUNT and CLEAR

signals. The COUNT signal can single step the channel selector whenever the FAULT signal is

active. The CLEAR signal is used to reset the fault latch. This removes the FIRQ request and resets

the clock logic to resume scanning.
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(2) Software

During initialization following bearing activation, the bearing monitor is loaded with a minimal

THRESHOLD value (stored in program and RAM memory), and the CLEAR line is pulsed to begin

scanner operation. (see Fig. 8-14)

I BEARING INTERLOCK 1SERVICE ENTRY ON FAST INTERRUPT

REQUEST

_ FAULT STILL PRESENT ?I
NO YES

IDENTIFY BEA_ING NUMBER

F
IDETERMINE FAULT

MAGNITUDE 1

GREATER THAN SYSTEM IN
CRITICAL LIMIT ?_YES It RESET MODE ?

i INO
YES

GREATER THAN

THRESHOLD ? --¥ES'_ [ )

, SHUT DOWN SYSTEM
NO

INCREMENT CURRENT NEW THRESHOLD EQUALS
THRESHOLD VALUE FAULT MAGNITUDE +1

WARNING CODE TO _,
STATUS SUFFER

RE-START BEARING
SCANNER

RETURN

"l
NO

k
REPORT ERROR

SYSTEMTO 1
RESET MODE J

Figure 8-14. Bearing interlock service - flow chart.

Upon receiving an interrupt request, the service routine checks the monitor status and checks for

the TEST signal. If this signal is clear, the FAULT was probably due to a transient condition. The

CLEAR line is pulsed to clear the FIRQ request and scanning is resumed.

If the fault is still present (TEST true), the CRITICAL LIMIT value is retrieved from program

memory and loaded to the D-A converter. If the TEST flag is still true, the fault is severe enough

to warrant the initiation of one of two shutdown sequences:

If the system is in the RUN or STANDBY modes, then the axial drives are disabled and the

system is returned to the RESET mode. The error is reported as a fault and the scanner is

re-started. The shutdown of the axial drives will generally clear the fault condition.

If the system is in the RESET mode, then the fault is probably due to a bearing circuit failure.

The 28 Vdc is shut down to prevent further damage to the bearing electronics. The fault is

reported and System Controller operation is halted.
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If theTESTsignalis clear, then the fault is not critical. The routine seeks the magnitude of the fault

by ramping down the value of the D-A converter until the TEST signal goes true. If the measured

fault magnitude is greater than the present THRESHOLD value, then a new THRESHOLD is

established by adding 1 count to the measured fault magnitude. If it is less than the present

THRESHOLD, then the present THRESHOLD is incremented by 1. A bearing warning is issued,

and program execution is re-entered in the current mode of operation.

The bearing THRESHOLD parameter is available via the remote control software and provides an

indication of overall bearing performance. Additional software routines uses the bearing monitor

circuit to determine the instantaneous magnitude of all the bearings (one scan of all channels), which

can be reported to the remote control computer.

8.5.6 Remote Operation

The RS-232 interface provides a communications path for accessing the remote control routines

embedded in the System Controller software. Commands are transmitted and replies received as

16 word (32 byte) blocks transmitted at 19.2 ldlobaud, with RTS/CTS handshaking (compatible

with INPUT and OUTPUT functions of Hewlett Packard Basic 2.0 or higher).

A Hewlett Packard series 9000 desktop computer served as the Remote Controller during the cooler

evaluation tests. Custom software was written to sequence the fundamental operations

(RESET, STANBDY and RUN) and cooler run-time data was acquired and updated once per second.

Automatic data logging to a hardcopy printer is enabled during the RUN mode. Additional screens

can be called up, using softkeys, to observe the radial bearing status or to control the cold finger

heat load. The remote control system has a far greater potential than we were able to utilize within

our development time frame. More sophisticated data logging and the addition of closed-loop

control would enable parametric testing which would otherwise require intensive manual manipu-

lation of the system over an extended period of time (e.g., find design stroke to maintain x degrees

to a heat load of y watts).

8.5.7 Ancilliar), Interlocks

A set of external interlocks is provided to connect with external equipment necessary for safe

operation of the cooler. These are accessible on a terminal strip located inside the electronic cabinet,

near the umbilical feedthrough. Each input is optically isolated from the logic circuits, and can be

configured to operate by opening or closing a path to circuit common (also provided). One input

is wired to a thermal switch within the cabinet to provide enclosure overtemperature protection.

Another is connected to a liquid flow meter in series with the linear motor cooling jackets. Two

more are available for future expansion. A fault at any of these interlocks will force the system to

the RESET mode, where risk of cooler damage is minimal.
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9.1

MECHANICAL FABRICATION

General

In designing the refrigerator parts, consideration had to be given to the fabrication sequence, the

heat-treating and heat-processing schedules, and the long-term stability of the completed compo-

nents and assemblies. One important design decision was the choice of materials to be used for the

refrigerator. Titanium was selected as the primary material due to its excellent long-term stability,

ensuring that the dimensions of the parts would not change after fabrication if suitable care was

used. Additionally, titanium offers an excellent strength-to-weight ratio, making it desirable for

spaceborne applications. Since tight tolerances and close clearances were involved, thermal-expan-

sion coefficients were important. Almost all metal parts were made of titanium, with the major

exceptions being magnetic materials. Where minimum size or weight was the overriding concern,

as in the displacer motor armature and the moving armatures for the magnetic bearings, vanadium

Permendur was chosen as the ferromagnetic alloy, because it has the highest flux-carrying capacity

available. For motor stators, Corovac, a compressed powder iron, was used. It has reasonably high

flux capacity and excellent electrical resistivity. Magnetic-bearing pole pieces were made of

vanadium Permendur which closely matched the coefficient of thermal expansion of titanium.

These pole pieces were brazed into the housings, and the heavy walls of these parts required the
thermal match. The cold-cap at the end of the cold finger was fabricated of aluminium, thermal

conductivity being the most important parameter. Where electrical insulation was required,

ceramics were used. It should be noted that all of these materials are inorganic. The complete

absence of any organics from the working space of the refrigerator ensures successful operation for

long periods of time with no degradation in cold performance. All parts of the machine can be

vacuum baked at 100"C to drive out any adsorbed gaseous contamination.

Many of the internal joints in the machine are braze joints in which a filler metal is used to

permanently join two components at an elevated temperature. Careful planning was required to

combine the brazing processes with the other heat-treating processes. Magnetic materials had to be

joined and magnetically annealed at the same time, in order to achieve optimum magnetic properties

as well as a strong joint. The titanium parts were generally stress-relieved during the brazing

operation, and this had to be done at a point in time when the heavy machining operations were

completed. In some cases, many components of widely varying wall thickness were joined

simultaneously, requiring careful consideration of the heating and cooling rates to prevent perma-

nent distortion. Before ceramic parts could be brazed, they had to be prepared with several

metallization steps. Braze metals had to be identified which would not react adversely with any of

the metal components. In some cases a nickel transition piece was first joined to one of the parts,

to allow the joining of two incompatible metals (such as copper to titanium). Quality control

required testing every joint for helium leak-tightness, using a mass-spectrometer.

Another joining technique used was miniature TIG (tungsten inert gas) welding. This was used to
form the hermetic seal for the thin cans around the motor coils, to hold the ceramic window

assemblies in place, to join the two sections of the displacer, and to attach the end caps on the piston.

The advantage of TIG welding is its highly localized heat which can be used on high-precision,

finished parts without causing distortion. Additionally, the joint itself is very small, less than a

millimeter thick, so it can be used on small components or in tight locations.

9.2 Displacer and Regenerator

The displacer in the Prototype Model serves two main functions: (1) as the armatures (moving

parts) of the magnetic circuits for the magnetic bearings, magnetic springs, linear motor and the

linear variable differential transformer (LVDT), (2) as a displacer performing the thermodynamic
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functions of shuttling gas from the compression space to the expansion space through heat

exchangers and the regenerator, and (3) as the housing for the thermal regenerator.

The warm end of the displacer has two vanadium Permendur rings which carry the flux of the

magnetic bearings. In between the beating areas there is the moving armature of the linear motor

with its permanent magnets and the inner rings of the magnetic springs. The cold end houses the

regenerator matrix. Along the length of the regenerator, the temperature drops from about room

temperature down to 65"K or lower. To minimize heat leak into the cold end imposed by its large

temperature gradient, the regenerator matrix itself and its containment wall need to have poor
thermal conduction along the length.

The regenerator matrix material is 200 x 200 mesh phosphor bronze wire cloth. Circular discs were

punched out from the wire cloth and stacked inside the displacer to achieve a 36% volumetric

flU-factor. The wire discs are oriented with the weave direction 45" offset from one layer to the

next. This is to achieve minimal thermal contact between layers resulting in high axial thermal

resistance. Also, to avoid excessive heat leak, the regenerator wall is 0.020" thin.

9.3 Electrical Coils

9.3.1 General

This section describes the processes to be followed and the equipment, materials and techniques to
be employed for impregnation of the wound electrical coils. This includes exposed units as well as

those coils which are sealed within the working space of the cooler.

Several components of the cooler require a potting or impregnation treatment to immobilize wire

members and fill interstices within the chambers of the windings. Vibration and motion can cause

failure of wire leads and sections unless wire movement is eliminated by potting or impregnation.

Each magnetic-bearing pole coil is wound in a fixture without the use of a bobbin and the unit is

rigidized and stabilized by the impregnation process before the coil is removed from the winding
fixture.

Motor coils of the several linear motors are impregnated and baked prior to being sealed within their
titanium covers.

The delicate (fine wire) coils of the LVDT sensors are similarly stabilized during fabrication by an

impregnation treatment prior to the final encapsulation and sealing operation.

A list of the applicable component drawings is as follows:

Dwg. No. Item Notes

001304 Coil, Stator Iron Assy-Outer (Piston Motor) 1

000670 Inner Stator Assembly 2

000649 Stator (Insep. Assy.), Displacer Motor 3

001370 Coil, Magnetic Bearing, Displacer 5

001368 Coil, Magnetic Bearing, Piston 5

001374 Coil, Magnetic Bearing, Counterbalance 5

000633 Coils, LVDT Bobbin 6

001335 Motor Stator, Counterbalance 4
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9.3.2 Requirements

(1) Equipment

Vacuum/Pressure Impregnation Chamber. Essentially any chamber of sufficient volume to hold

the component in a fully immersed and completely withdrawn position over the varnish container

and which can withstand a forepump vacuum (a few microns pressure) and moderate pressurization

(about 15 psig nitrogen) is satisfactory. The chamber should be valved in such a manner that

repeated evacuation/pressurizations can be performed easily. A means to immerse and withdraw

the component from the varnish container while within the chamber should be provided. A

custom-made chamber constructed of an 18" length of 8" dia. Pyrex pipe together with "O" ring

seals, end-plate flanges and a cover equipped with appropriate fittings, valves and gauges are shown

in Figure 9-1.

Air Oven, Blue M: Forced convection oven, Model OV 490A-2, 1600 watt or equivalent.

B&L Zoom Stereo Microscope, 0.7-3.0 X: With 10 X wide field oculars or equivalent.

Miscellaneous Hardware: Mandrels, small tools, spatulas, soldering iron, mixing pads, etc.

Simpson Meter, Model 260 Multimeter - or Equivalent: This instrument is used for checking

electrical continuity and electrical isolation.

Jigs and Fixturing: Each motor coil and LVDT require an impregnating jig or fixture which will

prevent varnish from entering or collecting on surfaces that are not to be coated or areas which

would be difficult to clean at a later stage. Specific fixtures are described at the appropriate level.

Generally, aluminum fixtures with screwed or bolted fastening and sealed with "O" rings have

proved to be most useful.

Ultrasonic Cleaner: Branson Model PSD or equivalent.

Vacuum Oven, Fisher Isotemp Model 281 or Equivalent: To remove last traces of cleaning solvents
from coils and chambers.

(2) Materials

Coils for Impregnation: Each coil and its fixture or bobbin shall have been checked for electrical

and physical specifications. Appropriate marks or identification features shall be present so that

the each component can be positively identified after treatment.

GE 707 Solventless Varnish: A serni-rigid, solventless, high-temperature varnish for general

purpose insulation suitable for VPI application.

Two Component Epoxy Cement/Adhesive: DEVCON 5-minute epoxy or equivalent.

3M Structural Adhesive, Scotch-weld Ec2214 Hitemp or Equivalent.

Isopropyl Alcohol, Acetone, Trichloroethane: Mallinckrodt Transistar grade or equivalent.

Solder, Tin/lead (60/40), Kester 44 or Equivalent.
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Figure 9-1. Vacuum pressure impregnation chamber.
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9.3.3 Preparation of Varnish

The varnish should be filtered at periodic intervals to rid the bulk of any globs and masses which

might otherwise hinder the impregnation process. Typically, the varnish is initially filtered and then

again, if necessary, at four week intervals. A linfless f'dter cloth of the type used by painters is quite

adequate.

A varnish container is chosen which fits closely within the inside dimension of the chamber, i.e.,

in this case a 4-liter lipless stainless steel beaker. A Pyrex glass 4-liter beaker is also appropriate

for the chamber described. An appropriate amount of varnish is filtered into the beaker and the

necessary quantity of catalyst is added and thoroughly mixed. The amount of varnish is determined

by the liquid level in the beaker when the part is fully immersed in the chamber. This amount will

vary, obviously, depending on the volume of article being impregnated. It is recommended that

initially the varnish be outgassed by vacuum pumping until the violent bubbling subsides. There

will be some bubbling when a part is initially immersed in evacuated chamber but it should soon
abate.

A winding is best cleaned by immersion in isopropyl alcohol followed by vacuum outgassing to

remove the last traces of solvent. The jigs and fixtures are also cleaned with ultrasonic cleaning in

acetone and trichloroethane solvents. "O" rings are generally cleaned with alcohol and not greased,

but rather held in place in captive grooves designed to provide adequate ring exposure to give a

good seal.

Final assembly of components and fixtures should be done with lint-free gloves to prevent

contamination (fingerprints) of critical surfaces.

9.3.4 Procedure for Impregnating Coils

Linear Motor Coils. The counterbalance and displacer sections each have a single stator coil while

the piston motor is made of two wound coils, an inner and outer member. This requires that four

different fixtures be prepared to expose the respective coils for impregnation and seal off the areas
where no varnish is to occur.

LVDT Coils. A minimum of three units are required for the machine. All are essentially identical

in size except for the overall length, and a single fixture should accommodate all units.

Bearing Coils. Each section (expander, compressor, counterbalance) uses identical coils for

individual bearing sets, but the coils from section to section are different. The coils are open-wound

on individual forms so that no additional fixturing is necessary. Each section requires a minimum

of eight coils and, in general, a spare pair is recommended.

1. Fixtured unit is placed on hook and cover lowered into place on chamber. Chamber cover is

secured with wing nuts.

2. Chamber is then evacuated to about 10 to 25 Tort pressure and pumped for about 30 minutes.

3. Unit is then lowered into varnish and pumping is continued for about one hour or until bubbling
subsides.

4. Pumping is stopped and chamber pressurized to 15 psi with nitrogen for 30 min. Unit is then
raised from varnish and allowed to drain for 10 min.
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5. Steps2, 3 and4 arerepeated after which chamber is opened and unit suspended within baking
oven.

6. Unit is baked at 167°C in air for 2.5 hrs.

7. Unit is removed from oven, cooled and inspected. If any deep fissures or crevices appear, the
process is repeated until adequate fill is obtained.

The unit is removed from its jig or fixture and checked visually for complete impregnation.

Electrical checks are made to insure continuity and isolation, as necessary. Unit is then submitted
to Quality Control.

9.3.5

(1)

Procedure Notes

Drawing 001304, Coil/Stator Iron Assembly-Outer (Piston Motor).

The wound assembly is first fitted with the back iron segments. These consist of two hemi-cylinders
of Corovac which are held in place with 3M Scotchcast structural adhesive, aluminum filled,

designated 2214 High Temp.

An aluminum jig is then prepared which exposes the windings and back iron to the impregnating
varnish but which seals off the inner cylinder, ends and TIG weld areas from the varnish. It is

important that the jig be designed, fabricated and assembled so that no varnish leaks to the inner
surfaces.

All components which will see the impregnating varnish are cleaned by immersion in isopropyl

alcohol followed by degassing in a vacuum oven heated to about 100°C, 2-3 hours. The component

and jig are then assembled, visually inspected for tightness and then mounted within the chamber

while in the elevated or drain position. Impregnation is carried out as previously described.

When it is apparent that the part is adequately impregnated and baked the jig is removed and surfaces

examined. The varnished unit is checked for electrical continuity and coil isolation.

The unit is submitted to Quality Control.

(2) Drawing No. 000670, Inner Stator Assy. (Piston Motor)..

This item requires an aluminum jig which will expose only the wound coil surfaces to the varnish,

as described. All other surfaces should be shielded from the impregnating varnish. This requires

a jig similar to that for the previous coil but of different dimensions. The item and jig are degreased

and assembled and positioned within the chamber. Impregnation is carried out as described. After

the final bake, the jig is removed, the coil inspected for complete fill and electrically checked for
continuity and coil isolation.

The unit is submitted to Quality Control.

(3) Drawing No. 000649, Stator, Displacer Motor.

The dimensions of this unit differ from the other motor coils so that another aluminum jig with "O"

ring seals is required for the impregnation process. Again the fixture is designed to expose coil
surfaces to the varnish while all other surfaces are shielded from the varnish. Procedure of cleaning,

assembly, impregnation, baking and inspection is as described previously.
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Thevarnished motor stator is submitted to Quality Control.

(4) Drawing No. 001335, Motor Stator, Counterbalance.

Counterbalance This unit is not intended to be hermetically sealed. The outer surface of the coil is

covered with a thin titanium shell to confine any loose particles which may be generated over time.

There are several slots and races which are not sealed. The counterbalance chamber is pressurized

with a gas other than helium, and the unit contains no surfaces or components which might be

affected by gaseous impurities. However, it is desirable to keep the weld areas free of varnish. A

jig was designed which covered the TIG weld areas by use of "O" rings and also prevented the

varnish from entering the inner bore of the coil assembly.

(5) Drawing Nos. 001368, 001370, 001374, Magnetic Bearing Coil.

For Piston, Displacer and Counterbalance. Each section requires a minimum of eight units and

since all coils are similar except for wire size and outside dimensions, the impregnation process is
identical for all.

As wound on its jig, a coil consists of a winding between two teflon-faced flanges with start and
end leads.

Strip of 3M polyimide insulating tape is laid down between terminal lug area and coil body.

Coil ends are dressed to length, stripped of insulation, tinned and soldered (60/40, Sn/Pb

solder, rosin flux) to terminal lugs.

• Strip of phenolic linen insulation with slots to accommodate lugs is laid over terminals and

epoxy bonded in place.

• Strip of fiberglass mesh with slits to accommodate terminal lugs is laid over entire coil surface

and epoxy-bonded in place.

• Entire unit is then soaked in isopropyl alcohol for 15 minutes followed by a vacuum oven

pumping for 30 minutes. At this point coil is ready for impregnation.

Two impregnations and bakes are performed on each coil. After baking the flange restraints, the

side flanges and the core section are removed. Each coil is inspected for complete fill (impregna-

tion). No voids or fissures should appear. The unit is checked for electrical continuity and then

submitted to Quality Control.

(6) Drawing No. 000633, Coil, LVDT Bobbin.

Each LVDT unit is impregnated with the inner shield in place using a fixture which provides for

complete Idling the spaces in and around each bobbin coil. It is important that the cavities be

completely £dled while keeping the regions where subsequent TIG welds are to be performed free

of varnish. The jig should allow the varnish to enter the bobbin chamber and also prevent it from

contacting the weld regions. A sketch of these features is shown in Figure 9-2.

The parts are cleaned with isopropyl alcohol dried in the vacuum oven and assembled. Each unit

is impregnated in the manner described taking care to immerse the part only to the depth of the vent

holes. Impregnation and baking is performed twice.
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LVDT POTTING FIXTURE

Figure 9-2. LVDT Impregnation fixture.

The fixture is carefully removed from the unit. Electrical continuity is checked, serial number

identified and then submitted to Quality Control.

9.4 Heat Exchangers

9.4.1 General

There are two heat exchangers of interest in the refrigerator, both of which are located in the cooler

portion of the machine. The lowest temperature is developed at the cold end which consists of an

aluminum-titanium, brazed assembly, machined to provide the proper exchange surface, and a

second exchanger located around the displacer motor area where the heats of compression and

extraction are conducted through a brazed titanium-titanium assembly to an externally mounted

cooling jacket. The fabrication of these two heat exchangers is described next.

9.4.2 Aluminum-Titanium Heat Exchanger

The following drawings are referenced to aid in identifying the various components and stages of
fabrication.
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Item Dwg. No. Description

1. 002644

2. 002641

3. 002642

4. 001251

5. 002676

6. 001252

7. 000736

CORE, Aluminum 1100

CAP, (Casting Vessel)

Cover, (bottom, Casting Vessel)

Cold Finger Cap, (cast Assembly)

Cold Finger Cap, (component For Machining)

Cold Finger Cap, (machined Exchanger)

Cold Finger Cold End, (Final Assembly)

The cold side exchanger consists of an aluminum-titanium assembly in which commercially pure

aluminum is vacuum cast in a clean titanium vessel so that a strong hermetic joint between the two

components, aluminum and titanium is formed.(1) The dimensions of the vessel are chosen such

that the final exchanger component is easily machined from selected portions of the aluminum

casting and its titanium vessel.

A titanium cylinder is machined as shown, Item 2, and to one end a bottom, Item 3, is miniature

TIG (Tungsten Inert Gas) welded, Item 4. The vessel is cleaned and leak checked. A charge of

Aluminum 1100 is machined to size, Item 1, cleaned and loaded within the vessel and the assembly

placed within a vacuum furnace equipped with a quench tube (2) and with suitably located

thermocouples. The furnace is pumped and heated to give a melt of aluminum at which point the

temperature is lowered at a controlled rate so that the aluminum begins to solidify fin'st at the base

of the vessel, above the quench tube and the solidification front progresses upward toward the mouth

of the titanium vessel. The final shrinkage cavity which generally occurs during solidification is

produced in the upper region of the cast and is discarded, as excess, during the work-up of the heat

exchanger, Item 5. The raw cast is Hot Isostatically Pressed (HIPPED) at 520"C for 4 hours, at

15,000 psig argon atmosphere, to consolidate the cast and remove any residual voids which might
remain in the aluminum material.

The cold finger cold-end cap is machined from the processed assembly. The wall of the casting

vessel becomes the titanium shell with its mounting lugs and miniature TIG weld joint while the

aluminum cast is developed into the expansion space, Item 6. The internal cylindrical surface of

the expansion space is slotted to achieve a larger surface area for the heat exchanger. In this instance,

forty slots are generated by means of electrochemical discharge machining (EDM). This process

produces a cast surface as is characteristic of an electric discharge which involves a limited melting

of the basis metal. For this reason it is extremely important that all loose and friable metal particles

be removed totally from in and around the slots. (This exchanger is but a short distance away from

the displacer shaft clearance seal and any debris which might break free from the exchanger surfaces

in this region could seriously damage the seal and the entire machine.)

The cold side heat exchanger is joined to the thin wall cold side cylinder by means of a miniature

TIG weld as shown in Item 7. All components are mass spectrometer helium leak checked for

hermeticity at every stage of the fabrication/assembly process.(3)

Comment Notes:

(1) Much investigative work went into this technique of casting pure aluminum into a titanium

vessel with subsequent controlled cooling to obtain a sound, reliable and reproducible joint between

the titanium and the aluminum. Metallographic specimens demonstrate conclusively that the

interface bond is sound and reliable with no brittle intermetallic compounds formed. Repeated

cycles of cooling to liquid nitrogen temperature followed by warming to room temperature, in the
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orderof thousandsof times,while the unit was internally pressurized to 400 psig helium produced

no indication of a leak. No indication of failure at the joint area has been detected. The differences

in linear coefficient of thermal expansion of the two materials appears to be accommodated by the

soft ductile properties of the pure aluminum. Tensile test specimens demonstrate that, when prepared
as described, the AI-Ti joint is stronger than the strength of the cast aluminum member.

(2) A quench tube is simply a gas supply connection through the wall of the vacuum furnace which

provides a means of initiating the solidification process at the bottom of the titanium vessel and

thereby having the solidification front advance upward through the melt. The vacuum level is

allowed to degrade during the solidification process. The quench tube together with a reasonable
temperature control of the furnace insures a good directional cast.

(3) Several specimens were prepared and welded as miniature TIG welds as would be done in the

final assembly. These units were pressurized, liquid-nitrogen-quenched and cycled repeatedly.
Pressure levels of 400 psig were used. Rupture tests were run, and the rupture pressure was found
to be about 2500 psig helium.

9.4.3 Titanium-Titanium Heat Exchanger

The following drawings are referenced as shown:

Item Dwg. No. Description

1. _2_1

2. 000621

3. 000606

4. 000607

5. 000600

6. 000608

Exchanger, Heat, Displacer Motor Housing

Exchanger, Heat (Machining Details)

Displacer Motor Housing (Brazing Assembly)

Displacer Motor Housing (Machining)

Displacer Housing Assembly (Solder Assembly)

Displacer Motor Housing (Machining Detail)

The displacer motor heat exchanger consists of a brazement involving a multiplicity of gas passages

machined into the surface of a liner brazed to the inner surfaces of the motor housing. The surfaces

are final machined after optimization of the magnet pole pieces and following the installation of the
fiber-optic radial sensors.

The exchanger is developed from rough-machined stock of commercial grade titanium which is

given a stress relief heat treatment in a vacuum furnace, Item 1. The unit is then machined to provide

the gas passages, plenums and grooves for the pre-placement of braze metal as shown in drawing
of Item 2. The braze metal is entirely captive within the contact surfaces and is of an amount which

will provide adequate material for the faying surfaces with no excessive corner fillets or runouts.

Simultaneously with this brazing operation, the radial sensor inserts, pole piece subassembly, and

feed through inserts are also installed in the displacer motor housing at this time, Item 3.

At this stage the gas passages are susceptible to contamination by chips and debris from machining

operations. For that reason the passages are intentionally filled with a material which is easily

introduced and removed and which withstands the solvent action of grinding and machining fluids.

The chemical, potassium sodium mate, KNaC4H406.4H20, works well for this purpose with a

melting point of 70/80"C. It can be easily melted and poured into slots and cavities. In this manner

with the passages and ports filled it can be assured that no small particle will become temporarily

lodged within the gas passages only to become dislodged later when its presence in the clearance

seal would likely ruin performance. The chemical is easily removed from the slots by warming the
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assemblyto allow thebulk of thematerial to flow out and then followed by copious washing with
warm water. A flame test for the alkali metals is run on the final rinses to assure that all of the

chemical has been removed from the passageways.

The sensors and electrical feed-throughs are installed, Item 5. after which the passages are again

filled for the final machining operations as shown in the drawings for Item 6.

Fiber-Optic Radial Position Sensors

General

The position of each cylindrical component within its housing must be known at all times so that

the proper clearance can be established and maintained for the reciprocating members, displacer

rod, piston shaft and counterbalance. A fiber optic sensor is used to establish and maintain the

necessary radial clearances. The terminus of each sensor is a bulkhead fitting which is mounted into

the wall of the refrigerator and acts as a emitter/receiver of a position signal for each magnetic

bearing pole as well as providing a hermetic seal for the pressure vessel. There are four poles to

each bearing and two bearings for each shaft resulting in twenty four optic sensors for the entire

refrigerator. Essentially a single sensor is described although it is obvious that the remaining twenty
three units are identical.

9.5.2 Procedure: Fiber Optic S,ensor r Bulkhead Fitting

The following list of drawings is for reference in identifying various components and stages of the
fabrication.

Item Dwg. N 0. Description

1. 002743

2. 002742

3. 001386

4. 001202

5. 000600

6. 000611

7" 000693

8. 000695

9. 001388

Optical Sensor Rod (bundle)

Optical Sensor Housing

Optical Sensor Assembly (bulkhead fitting)

Housing Mounts Displacer

Housing Mount Piston (Compressor)

Housing Mount Counterbalance

The fiber optic element is available in many different fiber sizes and bundle dimensions. The

element selected for the bulkhead fitting consists of about 50,000 fibers fused into bundle and sized

into a cylinder so that the interstices of the fibers are complete hermetic, Item 1. The surface of the

fibers was metallized by sputter coating with thin films of titanium, platinum and gold. These f'dms

are easily tinned and wetted by a tin-silver solder alloy consisting 96.5% Sn and 3.5% Ag. The

bulkhead Housing was prepared from 70/30 cupronickel alloy as described in Item 2. The bore of

the housing was also tinned with the Sn/Ag alloy. The bulkhead assembly was prepared by re-flow

soldering the components in a hot oil bath to obtain the fitting desired, Item 3. The fitting was

inspected for complete flow of solder in the joint and also leak checked for hermeticity.

The final installation of the sensor into the pressure vessel wall is noted in Items 4 and 5 for the cold

side, Items 6 and 7 for the compressor, and Items 8 and 9 for the counterbalance.
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9.6 LVDT

The LVDT consists of a plastic bobbin wound with three coils, one primary and two secondaries.

The coil wires are brought to six gold pins which extend from one end of the bobbin. The entire

bobbin/coil assembly is enclosed within three nickel-iron cannister shaped shields. The bobbin (with

the completed coils) is potted before insertion into the shields. The assembly is then hermetically

sealed by welding the first shield closed and soldering the pins to a ceramic insulator.

9.6.1 Bobbin Description and Assembly

The bobbin is machined from Vespel (DuPont, Inc.). This thermosetting plastic provides both the

mechanical stability required and also can safely withstand the temperatures seen during the

soldering and potting operations. Six gold pins are press fit into a flange at one end of the bobbin,

and they serve as terminations for the coil wires. The sectioned (or segmented) bobbin is machined

from a single cylindrical piece of Vespel. A longitudinal groove through each of the section walls

allows for routing the wires from one section to the next. The displacer bobbin has twelve sections

and the piston (and counterbalance) bobbin has seventeen. Use of this style of bobbin yields two

benefits. First, the sectioned style of winding results in overall lower interwinding capacitances;

and, second, the sections allow the number of turns to be adjusted for each portion of the coil.

The primary is wound first. For both the displacer and piston bobbins this consisted of three layers

per section for the entire length of the bobbin. A two part wire tacking adhesive is used to hold the

ends of each winding in place. A layer of tape is then placed over each section of the primary. The

secondaries are started at the center of the bobbin and then wound section-by-section towards either

end. For the smaller displacer bobbin this results in there being six sections occupied by either of

the two secondaries. In the case of the larger piston bobbins, the center section is not used for the

secondaries, and there are now eight sections allocated to each secondary. This center-to-end

sequence of winding the secondaries ensures that there is an electrical symmetry between each

secondary and the primary. Figure 9-3 is a pictorial of the LVDT windings. While the number of

turns per section is constant for the primaries, the secondaries are wound with an increasing number

of turns as one approaches either end of the bobbin. The effect is to linearize the LVDT voltage

output as the core is brought through its total range of travel. A step motor driven coilwinder was
used to wind the fine wire incorporated in the bobbins. The two motors (spindle and feed) were step

synchronized so as to be able to precisely control the winding pitch and the number of turns.

The secondary windings were tacked and attached to the termination pins in the same manner as

had been the primaries. A f'mal layer of Mylar tape completed the procedure. Figure 9-4 shows a

completed displacer bobbin. A final calibration test was conducted and then the bobbin assemblies
were made available for installation in the nickel-iron shields.

9.7 Mechanical Fabrication - Manufacture of Clearance Seals

9.7.1 General

Specifications for the expander and compressor called for clearance seals with values of 0.00065

to 0.00095 in. radial spacing and 0.0007 to 0.0010 in. radial spacing for the counterbalance section.

Such values imply that the sum of the tolerances of the three components could not exceed 0.0006

in. on diameter. Ranked in order of increasing difficulty, the tasks are as follows:

Roundness and straighmess of shafts (see Step 3, grinding of shafts).
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Figure 9-3. Pictorial illustrating direction of wind for each coil. Note that common

of the two secondaries is at the center of bobbin. Numbers refer to pin connections
external to LVDT.

ORIGINAL PAGE

BLACK AND WHITE PHOTOGRAPH

Figure 9-4. Displacer LVDT bobbin shown prior to installation within ftrst shield.

Shield is the cylindrical tube at upper left. Disk to fight is end cap with ceramic insert.

Titanium bore liner tube protrudes from left end of bobbin.
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• Roundness of each housing, bearing bore, in each pair of housings (see Step 1, grinding bores).

• Alignment of bearing bores to each other in any pair of housings (see Step 2, aligning of bores

and pinning).

It was determined that the finish grinding of the bearing diameters on the pistons would involve the

least risk; therefore, that operation would be the last step.

9.7.2 Procedure

(1) Step 1: Grinding of Bores (reference following drawings).

Item Dwg. No. Description

1. 000604

2. 000608

3. 00614

4. 000709

5. 000712

6 000697

Coldfinger Housing

Displacer Motor Housing

Piston Motor Housing

Piston Motor Rear Housing

Counterbalance Front Housing

Counterbalance Rear Housing

The bores were ground with each housing clamped in a vertical position on a Moore(l) Spintable.

The spintable has a trueness of rotation within 0.000005 in. and a maximum axial deviation

(including camming, flatness and parallelism) of 0.00002 in.

The banking or mounting surfaces on each housing were lapped flat to 0.00003 in. in order to

minimize the effect of distortion caused by the clamping forces.

The bores of each housing were ground perpendicular to within 0.0001 in. to the "C" seal surfaces

which are common to a housing set. In the case of the components 000604, 000608 and 000709

the bore and "C" seal surface were ground in the same setup. For the other three housings, 000614,

000712, 000697, the unit was clamped on the "C" seal surface and for reference purposes the

opposite end face was ground with the bore in the same setup.

Each bore was ground to _+0.0001 in. The exact size of each bore is not very important as long as

roundness and straightness fall within the + 0.0001 in. The bores were inspected with an air gage

and several roundness graphs were recorded with a Bendix PORTA-RON unit at different locations

along the bores. It is important that the optical fiber glass bundles do not protrude into the bores.

Preferably the ends of the bundles should be recessed 0.0001 to 0.0002 in.

(2) Step 2. - Aligning of Bores and Pinning (reference following drawings):

Item Dwg. No. Description

1. 000609

2. 000713

3. 000737

Cold Finger and Displacer Motor Housings

Piston Motor Housings

Counterbalance Housings

One piece of a housing pair is mounted vertically on a rotary or Spintable. The rotary may have a

maximum runout of 0.00003 in. and should be motorized. The bore is trued in position to the rotary
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table to about 0.00005 in. The housing is clamped to the table securely and runout rechecked.

(Spintable by Moore, Bridgeport, Conn.).

The second member of the housing pair is positioned atop the first and the tramming procedure is

repeated. There should be no "C" seal between the two housings at this point.

The alignment is inspected on a Surface Plate, with the housings in the horizontal position in a large

"V" block on top of a leveling plate (i.e., Federal, Model "rE 20). The CENTERLINE of the far

ends of each bore are leveled with respect to each other using an electronic indicator. This means

that if one bore is say, 0.0002 in., on diameter, larger than the other then that bore has to be 0.0001

in. lower in order to have the centerlines level to each other. Each bore is then checked all the way

through its length to be straight to each other within 0.0001 in. If, using the 0.00005 in./div, scale

on the indicator, the bores should have some taper as checked and recorded in Step 1, allowances
will be made.

The housings are rotated 90" and the inspection process is repeated. After the assembly passes

inspection the four dowel pin holes, 0.2500 +0.0001, -0.0000 in. are bored in line through both
flanges.

The assembly is then taken apart, the pin holes are deburred and inspected and the stepped dowelpins

(Part No. 002897) are pressed with the large diameter end into the flange with the through hole.

The housings are then cleaned and the housing with the "C" seal groove is positioned on a surface

plate and the dowel pin and threaded screw holes are lightly lubricated with moly grease.

An appropriate "C" seal is positioned in the groove and the top housing, fitted with three jackscrews

is lowered into position. Parallelism of the two flanges is maintained by frequent checks with a

height gage and by turning the jackscrews in unison. (This process is described in Section 10

Assembly Procedures). When the housing touches the "C" seal the jackscrews are removed and the

sockethead cap screws and washers are inserted and drawn up to the flange. The "C" seal is evenly

compressed by maintaining parallelism on the flange and by torquing the screws in numerical

sequence. Great care must be used during this procedure to assure repeatability of the alignment

of the bores to within 0.0001 in. and this is verified by rechecking on the surface plate using the

leveling plate and "V" block as described previously.

Disassembly must be done with the same care using the surface plate, jackscrews and indicator as

before. This is necessary in order to minimize the wear and distortion of the dowel pin system.

(3) Step 3: Grinding Shafts (reference following drawings):

Item Dwg. No. Description

1. 001303

2. 000666

3. 000705

Displacer Rod
Piston Rod

Counterbalance Piston and Armature.

The final clearance seal value was determined by taking the smallest region of each bore diameter

then subtract the minimum clearance on diameter to give a number which represents the maximum

shaft diameter, +0.0000 -0.0004 in. The following table represents values actually taken for the

components developed.
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Expander
Housing

Smallest

bore

Diam.

(inch) 1.2492

Displacer Piston Piston Count'bal. Count'bal.

Mtr.Hsng. Mtr.Hsng. Mtr.Hsng. Front Hsng. Rear Hsng.

1.2491 1.75015 1.7509 2.7232 2.72405

(-)Min.
diametr'l

clearance

(inch) 0.0013 0.0013 0.0013 0.0013 0.0014 0.0014

Shaft

Diameter

+0.0000

-0.0004

(inch)

1.2479 1.2478 1.74885 1.7496 2.7218 2.72265

9.8 Magnetic Bearing Pole Pieces

9.8.1 General

The material chosen for use as the magnet pole members is 2-Vanadium Permendur, a soft magnetic

material consisting of 2% Vanadium, 49% cobalt and the balance iron. Its physical properties

indicate that this should be good pole piece material. The coefficient of thermal expansion is close

to that of titanium into which it must be hermetically sealed and it is well wetted by those braze

materials which are compatible with titanium. The metal machines well and has heat treatment

(op_zation) Values which can be adapted to the brazing/heat treatment schedules required during
fabrication.

For 2V Permendur to attain its maximum soft magnet properties it is necessary that only the lightest
of machining stress be imparted during the final dimensioning operations. Standard, single-point

machining operations results in too high a stress level. Low friction grinding has proven to be quite

satisfactory as a f'mal operation and still maintain acceptable magnetic properties. For these reasons,

the components are machined to near f'mal dimension by regular techniques and then given a heat

treatment for optimization of magnetic properties followed by final grinding to finish dimensions.

These precautions are maintained in the following fabrication procedure.

9.8.2 Procedure

The following drawings identify the various components with the operations to be performed.
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Item Drawing No. Description

Cold Piston C'Bal.

Side Sect. Sect.

1. 002620, 002703, 002717

2. 002619, 002704, 002716

3. 001244, 001349, 001371

4. 001222, 001350, 001372

5. 001369, 001373

6. 000602, 000613, 000688

000606, 000708, 000716

7. 000603, 000720, 000711

000607, 001408, 000696

8. Same as (7) above.

9. 001202, 000695

000600, 001388

10. 000604, 000614, 000712

000608, 000709, 000697

Pole Piece (machining)

Pole Piece Block (machining)

Braze Pole Piece Block (assembly)

Pole Piece Radius Grind (raw dimension)

Machine Braze Gap (final sizing)

Braze Block into housing (assembly) 6

Grind Pole Piece to Bore(raw dimension)

Re-optimize pole pieces (heat treat)

Solder sensors (assembly)

Finish Machining (final dimensioning)

In the following operations the complete detail of the brazing and heat treat schedules are not

repeated at each instance. Suffice as to mention at this point a large vacuum furnace is used which

is capable of maintaining a good vacuum at temperature and in which the atmosphere and

temperature can be changed in a controlled manner. Brazing titanium requires an inert atmosphere

and the use of Gapasil-9 (braze alloy of palladium, silver and gallium by Wesgo, Calif.) as a braze

alloy is best done not under a hard vacuum because of the volatility of the silver content of the alloy.

The vacuum furnace was scheduled in the following manner.

The cleaned, jigged parts were placed in the furnace with thermocouples appropriately placed all

within a sheet titanium tent. The furnace was closed and pumped to a diffusion pump vacuum,

about 10 to -5 Tort and the temperature then brought to 250"C and held for 15 min., then the

temperature was raised to 650"C. and held for 15 min., then the atmosphere was let up to 1000

microns with argon and heating then continued at 20 degree/min, to 940"C. The parts were held at

temperature for 15 rain. and then ramped at 15 degrees/min, to 840"C or to 300"C (depending on

whether a optimization step was necessary) after which the power was removed and load allowed

to cool to room temperature.

The pole pieces, Item 1, are machined to dimension and heat treated as a group to establish the

optimum magnetic properties in the 2V Permendur. The treatment involves heating to 840"C. for

four hours and controlled cooling to 300"C followed by furnace cool to room temperature. Heating

is performed in a controlled atmosphere furnace, in this case a vacuum furnace. Immediately

following the vacuum f'n'ing the pole end surfaces which are the faying surfaces of the subsequent

braze joints are sputter coated with 2 to 3 micron thickness of pure nickel. It was established that

a sound nickel coating on the permendur surface produced a reliable and repeatable hermetic joint

when the it is brazed to titanium with Gapasil-9 braze alloy.

The pole pieces, Item 1, and titanium blocks, Item 2, are cleaned, jigged and fitted with braze sheet

and preforms to make up the subassembly, Item 3. The units are brazed in a vacuum furnace at a

temperature of 940"C for 15 minutes, at temperature. Upon cooling, the brazed assemblies are

inspected for full braze flow and checked for hermeticity with a helium mass spectrometer leak

detector (MS).
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The pole piece surfaces are rough ground, Item 4., to establish the basic bore curvature. The radius

size is 0.065 in. less than that of the finished bore, for example the piston motor housing has a final

diameter of 1.750 in. or a radius of 0.875 in. so the the pole piece block will have a 0.810 in. radius.

Following this operation the subassembly is machined, Item 5, to fit the housing ports into which

the subassemblies axe to be brazed, Item 6. The pole piece blocks protrude into the bore by 0.055

in. (This protrusion is made in case it becomes necessary to add additional braze material to achieve

full braze penetration.) The brazing of the beating subassemblies into the housings is a titanium-

titanium joint and is made with Gapasil-9 in a vacuum atmosphere furnace at a temperature of 920"C

following which a soak at 840"C for 1 hour is used to re-optimize the magnetic properties of the

permendur components. Attention must be given to fixturing and jigging the several components

which are simultaneously brazed during this operation. The nickel inserts, the fiber optic sensors,

and electrical feedthroughs are brazed also at this time. The inserts are brazed into the housings

also with Gapasil-9 alloy. The brazed housings are inspected for full flow and penetration of the

braze alloy into the faying surfaces. The entire housing is MS leak checked.

The protrusions of the pole piece blocks and the nickel inserts are then machined flush to the bore

which is at this point about 0.011 to 0.012 in., undersize, from the finish diameter, Item 7. The

bores of the nickel inserts for the optical sensor bulkheads and feedthroughs are finished machined
at this level.

The housings, as an assembly, are re-optimized for magnetic properties by heating to 840"C in

vacuum for one hour and ramp cooled to 300"C, Item 8. The units are again inspected and MS leak

checked for hermeticity.

The optical sensors are then soldered into place, Item 9. The housings are cleaned and again MS

checked for hermeticity. The sensor bulkhead and excess solder are machined away and finally the

protrusions are ground flush with the bore, Item 10. The f'mal grinding of the bore is performed as
described in the section on fabrication of Clearance Seals.
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10.

10.1

AS SEMBLY PROCEDURES

General

The following procedures were used to assemble the components of the three main sections of the

Stirling refrigerator. The critical tolerances involved and the demonstrated value of performing an

assembly under the cleanest of conditions mandated that the assembly be performed in a Class 100

Clean Room. Such a facility is available at Philips Laboratories, and an area of about 150 square

feet was made available. All usual precautions and procedures respecting Clean Room garb, tooling,

and components were maintained throughout the assembly.

A practice assembly of each section was made prior to the final Clean Room operation. This proved

to be extremely valuable in establishing a confidence level, demonstrating the best procedural

sequences to be followed, and providing final procedural improvements and corrections. It was

also of value in proofing the various jigs and fixtures required for assembly.

After the practice run each component was thoroughly cleaned, inspected and bagged. Hardware

was grouped, bagged and labeled to provide rapid and easy identification during the final assembly

within the Clean Room. The cleaning equipment consisted of an ultrasonic vapor degreasing unit

fitted with a spray wand, a gas-filtered air line, a stereo microscope and appropriate illumination

for final inspection of components. Each component and designated hardware was heat-sealed

within a clean polyethylene bag which was sealed within a second bag.

The basic units of the cooler are the Counterbalance, Piston (compressor), and Cold Side (ex-

pander).

The Counterbalance is possibly the least work-intensive of all the components, and, therefore

was selected as the forerunner of the assemblies. This unit is a complete pressure vessel and is

mechanically joined to the compressor/expander assembly.

The Compressor was assembled, covered and set aside in a vertical position within the Clean

Room to be mated later with the third Expander. There is a common flange surface for these

two units so that when joined they become a single pressure vessel.

The Expander was assembled and joined to the Compressor at which point they were both

mounted on a large aluminum plate for stability and then transported, in the vertical position,

from the Clean Room area to the Test Lab where the Counterbalance was attached. During

transport the internal shafts were immobilized by powering one axial set of magnetic bearing

poles with a portable battery pack. All necessary external hardware and electronics were also
installed in the Test Lab.

10.2. Counterbalance Assembly

The following is the procedure followed for the Clean Room assembly of the Counterbalance.

Numbers within the parenthesis designate the hardware package, i.e., screws, bolts, washers,

spacers, etc.

. The front housing of the Counterbalance is positioned on the Assembly Fixture and held with

two cap screws, 5/16-18 x 1 1/2 in. (16). The motor stator is positioned within the housing and

fastened with eight cap screws and washers, 8-32 x 1/2 in. and torqued to 24-26 in-lb (12).
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2. Thetwo coil wire leadsaresolderedto thefeedthroughterminals.Eachjoint is tested,cleaned
andcheckedto be freeof debris.

. Three jack screws are engaged within the rear housing so as to protrude 3-3/4 in. beyond the

interface. Dowel pin ends are lubricated with a minimum amount of grease. The screw threads

should be pre-lubed and bagged in such condition.

4. The LVDT core (armature) is positioned within the motor armature and secured with the four

screws and washers, 4-40 x 1/2 in. and torqued to 7-8 in-lb (10).

. The front end of the motor armature is located on the Delrin tip of the assembly fixture. The

armature is lowered into the front housing by rotating the lead screw until the armature bottoms

on the front housing.

6. Remove the assembly from the fixture and locate the housing on the surface plate. Position a

"C" seal in its groove in the front housing.

. Position the rear housing by engaging the jack screws and aligning the fiducial marks on the

two flanges. Lower the rear housing to the "C" seal by means of rotating the jack screws in

unison. Maintain the flange level by use of the height gauge/surface plate.

8. Insert twelve cap screws and washers, 1/4-28 x 3/4 in. and torque to 125-135 in-lb in the
sequence 1-11-8-5-2-12-9-6-3-10-7-4(14).

9. Remove each screw, one-by-one, and replace with a new screw and washer, torqued to 95-100
in-lb(15). Assembly to remain on surface plate.

Note: Steps 10 through 13 inclusive are best done as a subassembly outside the Clean Room,

inspected, tested, cleaned and bagged, and installed as required as a complete component.

10. Prepare the LVDT/Closure Flange of the Counterbalance by placing the inner locating spacer

on LVDT transformer, Ser. No. 3, and placing both within the LVDT outer shield (note position

of aligning arrow and the marked pin lead). Insert the outer positioning spacer.

11. Mount the outer shield to the Macor disk/Holder by feeding the leads through the disk and

maintaining position of "X" marks on housing and transformer. Install three cap screws, 8-32

x 3/4 in. and torque to 24-26 in-lb (7).

12. Solder the lead wires into the circuit troughs and dress the ends through the solder pad openings.

Mount the end cap to the assembly while matching "X" marks, using three cap screws and

washers, 8-32 x 1/2 in. torque to 24-26 in-lb (8).

13. Solder ends of LVDT leads to feedthrough terminals of end cap. Check and clear of debris.

Place a "C" seal in the groove.

14. Thread the three guide rods, 1/4-28 x 4 in. into the Rear Housing Flange (17). Engage the three

jack screws into the rear closure flange with a protrusion of 3-1/4 in. Locate the jack screws

onto the rear counterbalance flange and lower the rear closure. Maintain the flange parallel by

use of the height gauge on the surface plate. Remove the guide rods when the flanges are about

5/8 in. apart.
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15. As the flange contacts the "C" seal, remove jack screws and install twelve cap screws and

washers, 1/4-28 x 3/4 in. and torque to 95-100 in-lb. (9) in the sequence 1-11-8-5-2-12-9-6-3-
10-7-4.

16. Position the entire assembly on the piston-raise fixture and using a 5-1/2 in. long Delrin plunger

raise the piston to its limit and lock the plunger in position. There will be considerable resistance

to movement due to the gas spring effect. The entire assembly is now inverted. Remove the
fixture and Delrin rod.

17. Position a "C" seal in its groove. Attach the 14" long installation handle to the bumper plate

and lower it into the front counterbalance flange. With twelve cap screws and washers, 8-32 x

1/2 in., torque the closure to 24-26 in-lb (13), in the sequence 1-11-8-5-2-12-9-6-3-10-7-4.

Install a Schraeder valve core (Part No. 9914A) and torque to 1.5 to 3 in-lb.

18. Mount a single, magnet-bearing coil assembly in the same quadrant at each bearing site with a

0.010" pole piece shim between each leg and the pole piece top (17), torqued to 7-8 in-lb. (use

only eight of the 4-40 x 3/4 in. cap screws). With a portable power supply, energize each of

the bearing coils and transport the Counterbalance to the Test Laboratory while in the vertical

position.

Counterbalance Parts List

The following parts are cleaned, inspected and then double-bagged for subsequent assembly in the

Clean Room Facility:

Item Drawing No.

1. LVDT Subassembly LVDT Calibrated Assembly 000739

2. Inner Locating Spacer Shim, inner-LVDT 002638

3. LVDT Transformer LVDT Assembly, Piston 000633

4. LVDT Outer Shield LVDT Holder Assembly 002706
5. Macor/Disc Holder LVDT Conductor Plate 001398

6. End Cap End Cap Assembly 001397

7. Counterbalance Front Housing Piston Housing Assembly 000712
8. Motor Stator Stator Assembly 001341

9. Counter Balance Piston Assembly 001336

10. LVDT Core LVDT Rod Assembly 001348

11. Piston/Armature Piston Assembly 000705

12. "C" Seal Seal, Metallic "C" 001221-4

13. Counterbalance Rear Housing Housing, Piston LVDT 000697
14. Two "C" Seals Seal, Metallic "C" 001221-1

15. Piston Housing Bumper Plate 001383

16. Two Magnetic Bearing Coils Magnetic Beating Assembly 001413-1

17. Shims, Pole Piece Placed in Hardware Package 17 002896-3

Note: The LVDT transformer (3) and Items (2), (4), (5), (6) are assembled, inspected, tested and

cleaned outside the Clean Room and are to be final cleaned and bagged, as a subassembly,
to be taken into the Clean Room.
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Counterbalance Assembly Hardware

Hardware

Pack

No. Item Qty.

Soc. Head

Cap Screw
Size

Torque
value

(in-lb)

Washer

002737

#

7

8

16

12

10

14

15

9

13

17

17

18

LVDT outer shield to Macor Disc 3

LVDT Assembly to End Plate 3

Front Housing to Assembly Fixture 2

Stator to Front Housing 8
LVDT Core to Armature 4

Housings, pull down 12

Housings, final 12

Endcap to Rear Housing 12

Bumper Plate 12

Pole Piece, Coil Assembly 8

Pole Piece, Coil Assembly 4
Schrader Valve No. 9914A

8-32x3/4

8-32xl/2

5/16-18x1-1/2

8-32xl/2

4-40xl/2

1/4-28x3/4
w!

I1

8-32xl/2

4-40x3/4

Shims

24/26

24/26

24/26

7/8

125/135

95/100
I!

24/26

7/8

-1

-1

-1

-3

-5
I|

I!

-1

-3

Counterbalance Assembly Tooling

1. Delrin Tip ring for lead screw.

2. Thrust Bearing
3. Three pieces, jack screws, 5/16-24x9 in. longl

4. Piston raising fixture with 5 1[2 in. long Delrin plunger.

5. Three pieces LVDT Assembly guide rods, 1/4-28x 4 in. long.

6. Bumper plate installation handle.

7. Battery Pack, 4-volt.

10.3 Compressor Assembly

(Parenthetical numbers refer to Hardware Packages.)

Note: The LVDT is prepared as a subassembly outside the Clean Room and after the unit is

checked it is cleaned and double bagged for use in the Clean Room The subassembly of the

unit is described in Steps 20 through 23, inclusive.

Note: The cooling jacket for the Piston Motor Housing with its "O" rings is installed outside the

Clean Room after which the unit is cleaned and inspected and re-bagged for introduction

into the Clean Room A lubricant is necessary since one "O" ring will be drawn over the

entire surface of the motor housing.

1. Mount the armature (magnet assembly) on the Assembly fixture, using the armature base, brass

ring, yoke and threaded rods (40).

, Elevate the lead screw fully, upward, insert the Delrin tube to guide the piston, insert the piston

rod and hold in place by hand while lowering the lead screw fully, downward. Install screws

(20) and torque the six 8-32 x 3/4 in. cap screws and washers to 24/26 in-lbs.
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3. Mount the LVDT armature core in the Piston Rod (21). Four 4-40 x 3/8 in. cap screws and

washers. Torque to 7/8 in-lb.

. Remove the yoke and threaded rods. Place the piston alignment fixture over the piston and

secure with Delrin clamp. Remove the entire assembly from the assembly fixture and set aside

for Step No. 9.

5. Mount the piston motor Housing to the assembly fixture using six 1/4-28 x 1 in. cap screws
(41).

6. Install the eight captive screws with threaded washers into the Piston Motor Stator Mounting
plate (30).

. Attach Inner Stator Coll to Stator Plate, aligning identification marks and using twelve 8-32 x

3/8 in. cap screws (29). Torque to 24/26 in-lb, in the sequence 24-13-17-21-15-19-23-14-18-

22-16-20 (see Fig. 10-1).

Place the Inner Stator and Plate on the Outer Stator Coil which is fitted with its lead-protecting ring,

again aligning marks on leads with plate openings. Install twelve cap screws and torque to 24/26

in-lb, in the sequence 1-9-5-11-3-7-2-10-6-12-4-8. (see Fig. 10-1).

TORQUE 7"0 _4-26 IN/LB
/At S£qUE/VC_" AS _,'t.,'_B_'RE_

Figure 10-1. Compressor motor stator assembly plate.
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Install thecopperbusbarsandcompletethesolderconnections.Use only Sn/Ag (96.5/3.5) solder

CEutectic Alloys No. 157). Test for continuity, isolation and resistance. Check area for debris and

contamination. Clean as necessary.

. Install crosshandle on aluminum lead-protection ring using four 10-32 x 5/8 in screws (43).

Insert the Stator Assembly in the piston housing being careful to align motor leads into Housing

Feedthrough Terminals.

Engage the captive screws with the threaded bosses in the PM housing. Torque to 24-26 in-lb.

Complete the solder joints, the coil leads to the feedthrough terminals, two places. Check area
for debris and contamination, clean as necessary.

Install 0.5 micron Filter Assembly (Part No. 002907) and torque to 100 in-lb.

. Engage lead-screw of the assembly fixture fully upward. Mount the Armature assembly and

alignment fixture from Step No. 4 to the Piston motor housing using four 5/16-24 x 1" cap

screws (41). Install the thrust beating and the 1.800" dia. by 0.75" long Delrin ring.

10. Advance the lead screw to just touch the Piston assembly.

11. Remove the Delrin clamp.

12. Lower the Piston/Armature Assembly into the Motor Housing. To prevent the piston from

rotating, insert the Delrin guide plug before the piston enters the alignment fLxture. Remove

the guide plug and the alignment fixture from the Piston Motor Housing.

13. Place the entire assembly on the surface plate.

14. Install the "C" seal and center in groove. Lubricate the 5/16-24 tapped holes with grease as well
as the dowel pin sockets. An absolute minimum of lube is to be used.

15. Install the three jack screws into the rear housing.

16. Place the Piston rear housing to the Piston front housing while maintaining the alignment marks.

17. Lower the rear housing into place using the height gauge and and dial indicator to maintain the

flanges parallel.

18. When the rear housing contacts the "C" seal surface remove the jack screw and install twenty

5/16-24 x 1 in. cap screws with washers (28). Continue checking for parallelism with height

gauge as the seal is compressed. Torque screws to 16.5-16.8 ft/lbs. (200 in-lb.) using the

sequence 1-4-7-10-13-16-19-2-5-8-11-14-17-20-3-6-9-12-15-18.

19. Mount the guide ring to the Macor plate frame of the LVDT Subassembly with two 12-24 round

head screws (35). Install the three 3/16" x 6" studs with 8-32 threads into the piston rear housing

(35). Align and locate the LVDT Subassembly onto the studs and lower the unit into place in

the rear housing. As this is being done, insert the two disc clamps in the cutouts in the outer

shield (25).
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Note: The following four steps are to be done outside the Clean Room, with the subassembly then

being inspected, cleaned, bagged and returned to the Clean Room.

20. Install the INNER LVDT SPACER in the outer shield and insert the transformer (Ser. No. 1)

into the shield. Align the pin marked with the arrow on the o.d. to the "x" marking on the outside

of the housing near the feedthrough.

21. Install the outer spacer atop the LVDT.

22. Install the Clamp Ring to the Macor Disc with two cap screws, 4-40 x 5/16 in. and torque to
7/8 in-lb (22).

23. Align the "X" mark on the Macor Disc Holder with the index pin (marked pin) on the LVDT.

Guide the Macor Disc over the Feedthrough wires and the LVDT pins. All parts should locate

easily, no forcing should be required. Attach the LVDT clamp ring to the outer shield with two

8-32 x 1/2" cap screws, torque to 24/26 in-lb (23).

24. Fasten the Macor Disc to the Rear Housing using three low profile head cap screws, 8-32 x 3/8

in., torque to 17/18 in-lb (24). Secure the two disc clamps with the 4-40 x 5/16 in. cap screws
_d torque to 7/8 in-lb (25).

25. Dress the six leads to lay in tinned grooves. Cut to length, being careful to remove all debris.

Solder leads and immobilize same in grooves using Sn/Ag, (96.5:3.5), solder. Do not use

tin/lead solder. The lead in conventional solders will strip the metallization and render soldering

impossible. Inspect joints for height, debris, clean as necessary.

26. Install the "C" seal and center it in its groove.

27. Attach the 14" long installation handle to the end plate and lower the endplate into the rear

housing. Install the End Plate with twelve 1/4-28 x 3/4 in cap screws and torque to 95-100

in-lb(26). The torquing sequence shall be 1-11-8-5-2-12-9-6-3-10-7-4. (Reference depth from

housing end face to plate is 0.125" when "C" seal is compressed.

28. Set aside until the cold side (Expander) is completely assembled; then proceed as follows:

29. Place Piston Housing, as in step 28 above, upon the piston raising fixture fitted with the 2 1/8

in. long Delrin plunger using four 1/4-28 x 1-1/4 in. cap screws (42).

30. Carefully raise the piston by advancing the plunger by hand until the piston rod is at its upward

limit. Tighten the plunger at that point.

31. Mount the 11 1/2" Dia. x 5/8" thick aluminum base plate on top of the assembly; use eight 1/4-28
x 3/4" (45).

32. Invert the entire Piston Housing Assembly. Remove the plunger and raising fixture. Inspect

the internal surfaces for absence of trash and debris. Clean as necessary.

33. Locate "C" seal and center in groove.

10-7



34.Mount the Cold Side (Expander) to the Piston Housing Assembly with the reference markings

of both assemblies aligned. Bring together with twelve 1/4-28 x 7/8 in. cap screws and torque

to 95-100 in-lb, in the sequence: 1-11-8-5-2-12-9-6-3-10-7-4 (19).

Note: If the "C" seal does not fully compress at these torque values increase to 135 in-lbs and when

fully compressed re-torque the screws to 95-100 in-lb.

35. Mount one magnetic bearing coil assembly on each housing, preferably all along one axis and

not adjacent to the reference mark. Use shims and 4-40 x 3/4" cap screws and torque to 7/8

in-lb. (51). Power the bearings whenever the unit is to be transported. Install a Schrader valve

core (Part No. 9914A) and torque to 1.5 to 3 in-lb.

36. Transport the assembled unit to the Cryo Lab in the vertical position with the bearings powered.

Compressor Parts List for Pre-Clean Room Assembly

Item Drawing No.

HOUSING-PISTON Motor
COOLING JACKET

Two "O" rings, Parker No. 2-370

Cooling Jacket Ring (Ring, Pressure)

LVDT Assembly (LVDT calibrated assembly, Piston)
LVDT Outer Shield (Shield and base assembly)

LVDT Inner Spacer (Shim, inner-LVDT)

LVDT Transformer (LVDT assembly, Piston)

LVDT Outer Spacer (Shim, outer-LVDT)

LVDT Clamp Ring (Ring, Clamp-LVDT)

LVDT Macor Disc Holder (Disc, Insulator and holder assembly)

000614

000727

000728

000654

000659

002638

000633

002639

001255

000700

Compressor Parts List for Clean Room Assembly

Piston Motor Armature (Armature Assembly)

Piston (Piston Assembly)

LVDT Rod and Core Assembly

Piston Motor Stator Mounting Plate (End Cap)

Inner Stator Coil (Inner Coil Assembly)

Outer Stator Coil (Outer Stator Assembly

Two Copper Bus Bars for Feedthroughs

"C" Seal (Seal, Metallic "C")

Housing, Rear

Two Disc Clamps (Disc retainer-LVDT) (In Hdwre Pkg.25)

"C" Seal (to end plate)

End Plate (Plate, end cap)

"C" Seal (Cold Side Interface with Compressor)

Two Magnetic Bearing Assemblies

Pole Piece Shims (Shims, Pole Piece Magnetic Bearing. Pkg 51)

Adapter and 0.5 micron Filter Assembly
Schrader Valve Core No. 9914A

001250

000667

000626

000676

001277

001306

002678

001221-4

000709

002741

001221-3

001384

001221-2

001413-2

002896-2

002907
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Compressor Assembly Hardware

Hardware

Pack

No. Item Quantity

Soc. Head Torque Washer

Cap Screw Value 002773

Size (in-lb.) #

19.

20.

21.

22.

23.

24.

25.

26.

28.

29.

30.

31.

51.

51.

Cold Side Expander-Piston 12
Armature to Piston Rod 6

LVDT Core/Piston Rod 4

Macor Disc-clamp Ring 2

LVDT Clamp Ring-Outer Shield 2

Macor Disc To Rear Housing 3

Two Disc Clamps-rear Housing 2
End Plate ! 2

Front-Rear Housings 20
Stators to Yoke Plate 24

Stator Assembly-Housing-Housing 8

Cooling Jacket 12
Pole Piece 8

Pole Piece Shims 4

1/4-28 x 7/8 95/100 -5

8-32 x 3/4 24/26 -1

4-40 x 3/8 7/8 -3

4-40 x 5/16 7/8 -3

8-32 x 1/2 24/26 -1

8-32 x 3/8LP 17/18 -1

4-40 x 5/16 7/8 -3

1/4-28 x 3/4 95/100 -5

5/16-24 x 1 200 -4

8-32 x 3/8 24/26 -1

8-32 x 3/4 24/26 -Spec.

CAPTIVE THREADED.

10-32 x 1/2

4-40 x 3/4

Hex Heads

7/8 -3

FIXTId'RINQ HARDWARE

35.

35.

45.

40.

41.

42.

43.

44.

Guide Ring to LVDT Assembly

Guide Ring Studs

Base Plate to Rear Housing

Armature-piston Rod Assembly
IV

Piston Alignment Fixture
||

Piston Raising Fixture

Guard Ring With Bar to Insert Stator

Piston Housing to Assembly Fixture

2

3

8

3

3

2

4

6

4

4

6

12-24 x 2

8-32 x 3/16

1/4-28 x 3/4

1/4-20 x 6

1/4-20

5/16-24 x 1 1/4

5/16-24 x 1

1/4-28 x 1

1/4-28 x 1 1/4

10-32 x 1 1/2

1/4-28 x 1

Round Head

Dia.6" Long.

Threaded Rod

Nuts

Compressor Assembly Tooling

1. Protective Ring for feedthroughs on Outer Stator.

2. Brass Ring (locator) for assembly fixture armature base.
3. Armature Base.

4. Armature Yoke.

5. Delrin Tube (to fit on end of lead screw).

6. Thrustbeafing.

7. piston alignment fixture.

8. Delrin clamp for piston ROd.

9. Cross handle for Stator Assembly (for Item No.I).

10. Delrin Ring, 1 3/16" Dia. x 3/4" long.

11. Delrin Guide Plug.
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12. Three jack screws, 3/8-24 x 6" long.

13. LVDT Assembly Guide Ring.

14. End plate installation Handle.

15. Piston Raising Fixture with 2 1/8" long Delrin plunger.
16. Base Plate, 11 1/2" dia.

10.4 Expander Assembly

NOTE: The numbers in parenthesis refer to hardware packages. The preferred assembly technique

involves a subassembly of the LVDT unit outside the Clean Room followed by inspection, testing,

cleaning and bagging of the unit prior to introduction into the Clean Room.

10.4.1 Subassembly LVDT Unit

Place the inner LVDT positioning spacer within the LVDT outer shield. Install the transformer and

align reference marks. Add the outer spacer and the clamp ring with its four 2-56 screws and torque

to 3.1/3.4 in-lb. (1). Add the framed Macor Plate with proper alignment and secure in place with

two 4-40 x 3/8" screws torqued to 7/8 in-lb. (2). Dress the LVDT leads within the tinned grooves

of the Macor plate and solder with the tin-silver alloy. Clean the area of residue and inspect to

insure the absence of trash, powder and debris. Mount the guide ring to the Macor plate frame with

two 12-24 round head screws (35). This subassembly should now be inspected, tested for continuity

and isolation, cleaned and bagged for entry into the Clean Room area.

10.4.2 Subassembly of Dewar Housing

Install the "O"ring in the Dewar flange of the cold finger housing. Mount the Housing and the two

piece clamp using eight 8-32 x 1/2" Hex Head cap screws. This assembly is to be done before the

unit enters the clean room area as a protection for the cold f'mger and its instrumentation.

10.4.3 Assembly of Cold Side (Expander) Section

1. Insert Displacer Motor Stator within Displacer Motor Housing and fasten with six cap screws,

8-32 x 5/16 in., and washers. Torque to 24-26 in-lb. (5).

. Locate and position the motor leads into the feedthrough terminals. Apply a light crimp on each

terminal to secure the lead in place. Reflow the solder in the lead/terminal joint, add more solder

if necessary. Inspect and test the connection and adjoining area. Remove and clean the area,

check for electrical continuity and isolation.

. Place brass ring on assembly fixture. Position the displacer motor housing (stator side up) on

the fixture while threading the LVDT feedthrough wires into the holes provided in the fixture.

Secure the Housing to the Assembly fixture with three 1/4-28 x 3/4 in. cap screws and washers
(32).

. Elevate leadscrew to its uppermost point. Install thrust bearing and Delrin guide plug and

thence the displacer rod (Armature). Lower leadscrew while applying strong pressure on the

upper end of the ROD to insure that the ROD follows the leadscrew as the magnetic spring

magnets in the Rod and Stator interact during the engagement. Note, that at some point there

will be a strong repulsion during the introduction of the shaft. The springs will tend to center

the shaft when the end of the regenerator extends about 6.250 in. from the stator surface.
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o Mount displacer rod clamp fixture on the stator end of the housing with the use of four 1/4-28

x 7/8 in. screws(33). Place the delrin ring over the displacer rod and clamp it securely. Place

two aluminum rings on two opposite legs of the fixture and tighten them.

6. Remove the three screws holding the displacer housing, ROD and clamp fixture to the assembly

fixture. Remove the assembly and invert the unit.

° Mount the LVDT armature in the displacer rod body using four cap screws and washers, 4.-40

x 3/8 in. (11). Insert a 1/4 in. dia. pin into the Delrin clamp ring and buttress it against a leg of

the fixture to prevent the displacer rod from turning while torquing the screws to 7-8 in-lb.

. Install the three 3/16 x 6" studs with 8-32 threads into the Displacer Motor Housing.(35) Align

and locate the LVDT subassembly onto the studs and lower the unit into place in the Displacer

Housing. Secure with three 8-32 x 3/8 low profile screws, torque to 17/18 in-lb (3).

o Mount the manifold plate using eight low profile screws, 8-32 x 5/8 in (4) and torque to 17/18

in-lb. Torque the inner set of four and then the outer four screws. This surface is now the

interface to the compressor front end. Inspect for cleanliness.

10. Invert the entire assembly and place it upon the surface plate. Remove the aluminum fixturing

and Delrin clamp rings and fixtures.

11. Remove Dewar from cold finger housing.

12. Install the three long jack-screws into the cold finger housing so that the screws extend 7 1/2

in. beyond the flange surface. Locate and center the "C" seal in its groove in the displacer

housing. Lubricate the dowel pin holes. Locate the cold finger housing atop the displacer motor

housing with the reference marks aligned. Level the dewar flange surface with the height gauge

and lower the cold side housing by rotating the three jack screws in unison. Check the level

often with the height gauge. When the cold side flange contacts the "C" seal surface remove

the jack screws and install twelve cap screws and washers, 1/4-28 x 7/8 in (6) and torque to

95/100 in-lb, following the sequence, 1-11-8-5-2-12-9-6-3-10-7-4.

13. Re-instaU the "O" ring in Dewar flange and mount cover and split clamp ring with eight, 8-32
x 1/2 in., hex head bolts (36).

This Assembly Now Becomes a Part of the Piston (Compressor).

Proceed to Step 29 of the piston assembly, page 10-7.
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Cold Side---Pre-Clean Room Assemble Parts List

LVDT Subassembly

Item
m

LVDT Calibrated Assembly, Displacer

LVDT Transformer (LVDT Assembly, Displacer)

LVDT Inner Spacer (Shim, inner, LVDT)
LVDT Outer Shield (LVDT shield, manifold)

LVDT Outer Spacer (Shim, outer, LVDT)

LVDT Clamp Ring (Ring, LVDT Clamp)

LVDT Macor Disc/Holder (Disc, Insulator and Holder Assembly)

Cold Finger Housing

"O" Ring, Parker No.2-150

Dewar Assembly

Two Dewar Clamps

Drawing No.

000655

000625

002638

001258

002639

002652

000700

000736

000657

001253

Cold Side (Expander) Clean Room Parts List

Displacer Motor Housing

Stator Assembly
Displacer Rod Assembly

LVDT Armature (LVDT Rod and Core Assembly)
Manifold Plate

"C" Seal

Four Pole Piece Shims (Hardware Pkg. 52)

Two Magnetic Bearing Assemblies

000735

001247

000686

001239

000660

001221-1

002896-3

001413-3

Cold Side Assembly Tooling

Brass Ring

Thrust Bearing

Delrin Guide Plug

Displacer Rod Clamp fixture with Delrin Clamp Ring and 1/4" dia x 3-3/16" pin

LVDT Guide Ring

Three Jack Screws, 5/16-24 x 9" long
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Cold Side (Expander) Assembly Hardware

Hardware

No. Item Qty.

Soc.Head Torque Washer

Cap Screw Value 002773

Size (in-lb.)

5 Stator-to-housing
11 LVDT Core

1 LVDT Clampring
2 Macor Disc-to-outer Shield

3 Macor Disc-to-displr. Housng
4 Manifold

6 Housings
36 Dewar

52 Pole Piece

6 8-32 x 5/16 24/26 9

4 4-40 x 3/8 7/8 2

4 2-56 x 3/8 3.1/3.4 6

2 4-40 x 3/8 7/8 3

3 8-32 x 3/8LO PRO17/18 1

8 8-32 x 5/8LO PRO17/18 5

12 1/4-28 x 7/8 95/100 5

8 8-32 x 1/2 hex head 1

8 4-40 x 1/2 3
4 Shims

Fixturing Hardware

32

33

34

35

35

Displr Housng To Assmbly Fix 3

Displr Clamp Fixture 4
Guide LVDT Outer Shield 2

Guide Ring, For LVDT Assembly 2

Guide Ring Studs 3

1/4-28 x 3/4

1/4-28 x 7/8 1/4 dia. Pin

4-40 x 3/4

12-24 x 2 Rnd.head

3/16 x 6 (8-32 thread)

Purge and Fill Procedure

General

This section describes an acceptable and proven method for purging and filling the working volumes

of the Prototype Cooler with the appropriate gases. High purity helium is used in the Stirling cooler

portion while pure, dry nitrogen is used in the active counterbalance chamber. It is necessary to

establish and maintain a clean, dry, working gas at all times to insure a long-lived, stable,
refrigeration machine.

The basic closure is achieved by means of a small core valve similar to that used in an automobile

tire and of an aircraft manufacture quality. The valve is inserted into and removed from its position

in the housing by use of a Core Removal Tool (CRT) similar to that used in the refrigeration industry.

The tool was modified to provide simple and direct mounting to the pressure chambers. Both

chambers are serviced with the same tool whereby the chambers can be pressurized, bled down,

pumped and re-pressurized, repeatedly, to achieve a clean working volume. Once pressurized, the

fill system is further sealed by a small "C" seal which is installed and torqued by use of a special
spanner tool.

A sketch of the modified CRT is shown in Figure 10-2. A list of applicable drawings is as follows:
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Figure 10-2. Core removal tool.

Dwg No.

001415

001221-5

002903

001414

9914A

Seal Cap, Fill Valve

"C" Seal, Lead Coated

Disc, Slip Washer, Fill Valve

Cap-Nut, Fill Valve

Valve Core, Schraeder P/N 9914A (*)

Spanner, Trammel Installation Tool.

(*) Available from Schraeder Automotive Inc., P.O.Box 675, Nashville, TN 37202.

10.5.2 Requirements

All chambers are assembled within the Clean Room and should have a core valve installed to close

off the working space from possible contamination by the Test Laboratory atmosphere. A core

valve tool is used to purge and fill each chamber with its appropriate gas. An appropriate filling

system is usexT_liidi-p¥0vides filtereddry gas to be in_ti&_ and evacti_ited from the chamber by

means of a programmed valved switching setup. A liquid nitrogen trap is used to dry the gases

during the operation. A block diagram of a typical setup is given in Figure 10-3.

10.5.3 Procedure

Any protective fixture or cap is removed from the area of the fill valve, and the CRT is installed

into the pressure chamber. The appropriate filter (0.2 micron size), LN 2 trap, switching valve array
and gas bottle is assembled and joined to the CRT connection. The tool operator rod is used engage

the core valve and to unscrew and back the valve body away from its seat. The valve is held in this

retracted or withdrawn position until the purging and pressurization operation is complete. It is

important that all components and connections be kept as clean as possible throughout the
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SWITCHING
PANEL

VACUUM
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Figure 10-3. Fill-purge setup.

purging/fill operations. Although the compressor portion of the cooler is fitted with a 0.5 micron

filter to retain any possible contaminants from entering the working space, it is still good practice

to maintain conditions as clean as possible.

The sequence of the programmed purge/fill operation is as follows:

1. Fill chamber to 250 psig, helium. Three minute holding time.

2. Evacuate to few microns Hg pressure. Three minute hold.

3. Cease pumping and hold system for three minutes.

4. Fill and repeat from (1.) above. (*)

(*) Other purge/f'dl cycles could be chosen. The three minute interval happened to be the

programmed switching interval which was readily available and proved to be quite adequate.

The purging operation is repeated for thirty-five (35) cycles, after which the procedure is stopped

at a chamber pressure of 250 psig helium.

The operator rod of the CRT is then advanced, and the core valve thread_ into its seat. The operator

rod will exhibit a distinct back pressure during the insertion and seating of the valve core due to the

helium pressure within the line. The valve is torqued to 1.5 to 3 in-lb. The CRT assembly is then

removed from the housing. A "C" seal is positioned in place, and the components consisting of the

Seal Cap, the Slip Washer and Cap-Nut are assembled over the seal. The Seal Cap is held stationary

by an Allen wrench while the Cap-Nut is torqued to value. A spanner is used to torque the seal to
35-40 in-lb.
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11. REFRIGERATOR PERFORMANCE TESTS

The section describes the measurement techniques and accuracy of the measured data. Performance

test data is presented, and the instrumentation used is listed in Section 11.6.

11.1 Performance Measurements

Cryogenic Temperature:

Cold finger temperature was monitored with the diode instrumentation described in Section 8.3. A

digital multimeter was used to monitor the diode forward voltage which was then used to calibrate

the signal conditioning circuitry so that the front panel readout was in agreement with the

manufacturer's calibration data sheet. Independent confirmation of the cold temperature measure-

ment was verified with the TRI precision calibrated diode and the cryo-controUer unit. The front

panel temperature readout and the TRI readout agreed within plus or minus 0.5"K during an initial

cooldown from room temperature (295"K) to 40"K.

Heat Load:

Calibration of the cold finger heat load and its controller was performed on the bench prior to

installation in the system. The heater element was immersed in a liquid nitrogen bath (77"K) and

the current through and voltage across the heater element were monitored using digital multimeters.

This calibration data was then used to confirm the performance of the heater controller when

integrated into the cooler control system. The errors between command and measured power values

(as determined via the D-A/A-D system circuits and remote computer) were in close agreement with

the benchtop calibration data (Table 11-1). Heater command values were adjusted to provide

accurate power loading at the cold finger for performance testing.

TABLE 11-1. Heater Controller Performance.

Programmed Power

(Control Voltage)

1.0

2.0

3.0

4.0

5.0

6.0

Measured Out

Benchtop VI

1.11

2.10

3.07

4.04

5.02

5.96

mt Power (W)

Computer Readout

1.13

2.07

3.07

4.02

5.00

5.97

Axial Motion:

Axial motion of the reciprocating shafts was measured at the output of the LVDT circuits. The
LVDT outputs are all scaled so that plus or minus 5 volts corresponds to the mechanical limits of

free travel for each shaft (+ 9 mm for the piston and counterbalance; + 3.38 mm for the displacer).

Figures 11-1 and 11-2 shows the position and motor current of the piston and displacer.
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(a) Piston position and piston current.

x - 3.6 mm/div.

I - 10 A/div.

(b) Piston motion spectrum.

3.6 mm/V

B

m

B

m

I

I

I

PWR SPECT A : 8.O,LBV 18. HZ

SPA_ O.O00ItZ-I_O0.OOHZ SH: 20gB_,'

I ! I

N:NONE P:!HZ

20. O0Jf:l',' _O,[B'

m

I

p

(c) Piston current spectrum.

10 A/10 mV

'Vx.,-

I

PWR SPECT k :- 40.4,LBV 18. _ _ t6 P: tHZ

,_:_AI't O,O00HZ -200._HZ _-30,[BV F_- 30,O0,LBV 10,118/

Figure 11-1. Spectral behavior of piston.
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(a) Displacer position and current.

x - 1.34 mrn/div.

I- 1 A/div.

(b) Displacer motion spectrum.

0.667 mm/V I I I I I I I

l

P;iA SPECT A : B.5.1B¥ '.B. HZ N: 1E P: IHZ

SPAN: O.O00HZ-200.OOHZ S,_ iOdBV F$: 10.OOkB7 _0_,,'

(c) Displacer current spectrum.

1 A/10 mV

m

m 1
r _____

I I 1 I I I I

P_q 5PECT A :- 44.6aRV lB. HZ N:. tB P: IH7

SPAN: O.O00HZ -200.OOHZ SN:-3OJBV FS:- 310.OOar_,¢ lOJB/

Figure 11-2. Spectral behavior of displacer.
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Amplitudeandfrequencymeasurements were made using the waveform calculator of the digital

oscilloscope. Because the position control operates in an open loop fashion, servo errors (which

drive the motors) are not corrected. Therefore, the actual motion will be somewhat less than the

command parameter, especially in the case of the piston subsystem which provides thermodynamic

input power. The maximum error of the piston subsystem is about 5% when the load is greatest

(minimum cold temperature). Overall amplitude stability (cycle to cycle) of all the axial control

systems was good, with a measured average deviation of less than 0.5%. The stroke amplitudes

presented in the performance test data reflect the measured values.

The operating frequency of the system is digitally derived and is therefore very stable. The digital

resolution of the reference generator is about 0.1 Hz, the same as the frequency resolution of the
oscilloscope. A test of the frequency control demonstrated repeatable control to within + 0.05 Hz.

Phase resolution of the reference generator is about 0.3". The phase delay is digitally derived and

is accurate and stable. Servo loop errors, however, add a worst case offset of 3 to 4" (piston lag),

which is not corrected by the System Controller. This phase error is constant at a fixed operating

point. The phase presented in the performance test data reflects the actual value as measured by the
Dranetz instrument.

Radial Motion:

Radial displacements of the shafts can be monitored at the buffered outputs of each of the bearing

circuits. The radial bearing circuits are calibrated for a + 5 volt deviation corresponding to the

mechanical limits of travel (in all cases: + 19 micron clearance seal annular gap), yielding an

approximate resolution of 4 microns per volt. The remote control software is equipped with a peak

detecting/peak holding display which provides an accurate assessment of bearing performance

while the machine is running. Because this routine interferes with the operation of the bearing

interlock, it should not be used continuously.

Scope photographs of all 12 bearing displacements at the design operating point are included in

Figure 11-3. It is interesting to note that the peak bearing excursions vary during cooldown, as the

changes in gas temperature and thermodynamic loading affect the harmonic current content of the

motor drive currents. Once the system has attained resonance at the operating point, the radial errors
are reduced and stable.

Electrical Power:

The electrical power input requirements of the cooler in both the STANDBY and RUN modes of

operation were assessed; the power requirements of the support electronics were measured as well.

Axial motor power was determined by simultaneously acquiring (in one acquisition) the real-time

voltage and current waveforms with the digital scope. A software routine scaled and multiplied the

stored waveform data (VI). The mean value (over 1 cycle) of the resulting power waveform was

then summed into a cumulative average power reading.

Radial bearing power figures are based on both measured and estimated figures. The sensor

electronics, as configured, require considerable power for the illumination sources (12 sources, 60

mA each). The sensor amplifiers require a small additional current (24, 2 mA each). The

STANDBY power for the bearing pole piece actuators (in a lg environment) was estimated using

a nominal bias current of 100 mA per coil, with dissipation for each coil based on resistance losses.

The RUN power estimate for the pole piece actuators was based on the difference of the measured
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(a) Piston bearing displacements.

3.8 microns/div.

XF

YF

XR

YR

XF

YF

(b) Displacer bearing displacements.

3.8 microns/div.

XR

YR

XF

(c) C'balance bearing displacements.

3.8 mierons/div.

YF

XR

YR

Figure 11-3. Bearing displacement errors.
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28V power input to the bearing driver circuits when the system was running. This assumes that the
current drivers are 100% efficient and hence is a conservative estimate. Cooler instrumentation

requires an insignificant amount of power.

The voltage and current input requirements of each of the electronic subsystems were measured in

both the STANDBY and RUN modes. They are presented in Tables 11-2 and 11-3. No attempt

was made to minimize the electronic power requirements.

TABLE 11-2. Electrical Power - System in STANDBY Mode.

• Breakdown of dc Current Requirements (Amperes):

DC Subsystem +5V + 15V - 15V +28V Power

(A) (A) (A) (A) _V)

Bearing Rack 0 1.02 0.28 0.99 47.2
LVDT & Instrumentation 0 0.25 0.30 0.17 13.0

Computer Rack 2.04 0.11 0.11" 0 13.5

Axial I)rivers (3) 0.12 0.01 0.02 - 1.05
Piston Driver - - 0.08 2.2

Displacer Driver - - 0.09 2.5
C'balance Driver - - 0.28 7.8

Ampere (A) 2.16 1.39 0.71 1.61

Volts (V) 5V 15V 15V 28V

Power (W) 10.8 20.9 10.7 45.1 87.5 W

• Power Delivered toCooler:

Radial Sensors (12 x 0.06A + 24 x .002A) x 15V = 11.5

Displacer Radial 8 x 0.1A 2 x 31 ohms = 2.5
Piston Radial 8 x 0.1A 2 x 10.5 ohms = 0.84

C'balance Radial 8 x 0.1A 2 x 2.6 ohms = 0.21

Displacer Axial 0.4A2,_ 2.2 ohms = 0.35
Piston Axial 0.25A" x 0.34 ohms = 0.02
C'balance Axial 0.2A 2 x 2.6 ohms = 0.1

0.1

Total Power Delivered 15.5 W

115 Vac input power to dc supplies VI = 267 W (17A pk for 2ms)

AC input power to the tic power supplies was measured to determine the electrical demand for

operation. Because the power supplies are of a switched-mode power conversion type, they

typically draw high peak currents at a low power factor. The peak current measurements are given

along with the average power data.
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TABLE 11-3. Electrical Power - System in RUN Mode (65"K 5W)..

• Breakdown of dc Current Requirements (Amperes):

DC Subsystem +5V + 15V - 15V +28V Power

(A) (A) (A) (A) 0V')

Bearing Rack 0 1.20 0.32 1.25 57.8
LVDT & Instrumentation 0 0.56 0.33 0.30 21.75

Computer Rack 2.81 0.23 0.12 0 19.3

Axial Drivers (3) 0.15 0.02 0.02 1.35

Piston Driver - - - 5.40 151.2

Displacer Driver - - - 0.14 3.92

C'balance Driver - - - 0.89 24.9

Amperes (A) 2.96 2.01 0.79 7.98

Volts (V) $V ISV I_V 28V

Power (W) 14.8 30.2 11.9 223.4 280.3 W

• Power Delivered to Cooler:.

Radial Sensors (12 x 0.0_SA + 24 x.002A) x 15V = 11.5
Displacer Radial 8 x 0.1A" x 31 ohms = 2.5
Piston Radial 8 x 0.1A 2 x 10.5 ohms -- 0.84

C'balance Radial 8 x 0.1A 2 x 2.6 ohms = 0.21

Beating Rack Input (1.25 : 0.99) x 28 V = 7.28

Displacer Axial (0.8A_ x 2.2 ohms = 1.4 W); VI = 1.6

Piston Axial (9.9A_ x 0.34 ohms = 33.3W); VI = 125

C'balance Axial (0.7A z x 2.6 ohms = 1.28 W); VI -- 11.5

115 Vac input power to de supplies

Environment:

Total Power Delivered

VI = 461 W

160.4 W

(25A pk for 2ms).

The ambient temperature maintained by the laboratory air conditioning system was 22"C. The

recirculating bath which provided coolant to the three housing cooling jackets was maintained at
21"C.

A vacuum system maintained a pressure of less than 10 "6 Torr within the insulating dewar. The

long term integrity of the insulating vacuum was found to be inadequate and will need to be
monitored during operation.

11.2 Search for Optimal Operating Conditions

The refrigerator was optimized for minimum total input power. In the design phase of the program,

analyses were performed to obtain the optimal design and operating parameters for minimum input

power. Upon completion of the refrigerator, experimentation was carried out to verify the optimal

operating conditions and to make adjustments due to fabrication tolerances and some higher order

effects which were not accounted for in the design study.
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Thetotal input poweris the sum of the thermodynamic input power to the Stifling cycle and the

electromechanical inefficiency of the motors. Based on thermodynamic analyses, conf'trmed by

measurement on refrigerators fabricated in the past, a small adjustment of the optimized operating

parameters does not significantly affect the Stifling efficiency, but would seriously compromise the

motor efficiency. The refrigerator consists of three damped oscillatory spring-mass systems

actuated by linear motors. The conditions for minimum power input operation of these systems

are a f'trst-order function of the refrigerator operating parameters such as cycle speed, spring

stiffness, and mean pressure (Sect. 3.2 and 5.2). Of these three systems, the piston input power is

about 80% of the total input power; thus, it is important that the piston be operated under minimum

power conditions.

After the Prototype Model was assembled, one could optimize the Stirling performance by hunting

for the minimum thermodynamic input power by perturbing the operating parameters while

maintaining 65"K and a 5 watt load. The operating conditions were optimized to achieve the

minimum power operation of the piston; this resulted in better than predicted efficiency.

Minimum power operation of the piston was accomplished by fhst setting the refrigerator to run

under the design parameters until it reached 65°K. Then, the phase between the flu'st harmonics of

the piston motor current and the piston position waveform was measured. Adjustments to the cycle

speed and mean pressure were made to obtain a 90" phase. This ensured the piston was operating

under the minimum power condition. The piston and displacer strokes were subsequently adjusted

to obtain 5 watts of cooling. The total power was further reduced by installing a radiation shield

around the cold end section. The shield was made from multilayers of insulated mylar sheets with

highly reflective metallization coatings.

Table 11-4 shows the design operating parameters and final optimized values. The close agreement

between the two sets of values validates the accuracy of the engineering analyses in this program.

TABLE 11-4. Refrigerator Design and Optimized Operating Parameters.

Design Optimized

(predicted) (measured)

Cold End Temperature K

Heat Sink Temperature K

Cooling Capacity W

Speed Hz
Mean Pressure psia

Displacer Amplitude mm

Piston Amplitude mm

Phase (displ./piston) degrees

Motor Input, Piston W

Motor Input, Displacer W

Motor Input, Counterbalance W

65 65

293 293

5 5

18.3 18.0

263 290

2.3 2.6

7.3 6.67

60 63.5

136 125

3 1.6

10 11.5
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11.3 Cooldown Characteristics

The remote control computer was used to log the cold end temperature at one minute intervals during

cooldown from room temperature. Two tests were performed, using the design stroke and an

increased stroke (Fig. 11-4). No heat load was applied at the cold finger. Note that the values

recorded by the remote computer rely on the linearized temperature estimate. These cooldown

curves may be utilized as a benchmark to gauge any deterioration in cooler performance.
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1) 18 Hz, 63" phase, piston stroke = 14.3 mm, displacer stroke = 5 mm.

2) 18 Hz, 63" phase, piston stroke = 13.1 mm, displacer staake = 5 mm.

Figure 11-4. Cooldown curve - no heat load.

11.4 Vibration Measurements

Axial accelerations of the cooler housing were measured at the ends of the housing, and radial

accelerations were measured at three points along the length of the housing with the accelerometer.

Power spectra of this data are shown in Figures 11-5 to 11-7.

Axial and radial displacement measurements were made at the extreme edges of the cold finger

insulating dewar, where we would expect to find worst-case excursions. To minimize extraneous
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vibrations,the instrumentwassecurelyanchoredto thesamerigid surfaceaswasthe mounting
cradleof thecooler. Photographsof thedisplacementwaveformsappearin theperformancedata.
A powerspectrumof theaxialdisplacementis includedfor correlationwith theaxialacceleration
data. Theresultsareshownin Figures11-5to 11-7.

11.5 Parametric Testing

A remote control computer offers wide flexibility in the performance of parametric testing.

Dynamic parameters such as frequency, phase, and amplitude of the piston and displacer motions

can be changed while the cooler is running. Feedback of the cooler performance parameters (i.e.,

cold temperature, heat load) provides a means through which parametric testing and data logging

can be automated via programming of the remote computer. The parametric testing for the cooler
was not automated.

Two parametric tests were performed. In the fwst, the cooler was run at the design point (sufficient

to provide 5 watts at 65"K), and heater power was varied. Final temperature and cooler input power
were measured once stable operation was established (Fig. 11-8). This test was perfomv..d prior to

the addition of radiation shielding in the insulating Dewar and reflects performance with the added
radiation heat load.

In the second test, the piston stroke amplitude was varied to maintain a constant temperature (65°K)

into a heat load of 5 watts and 2 watts. These points establish a performance curve for comparison

to predicted performance based on computer modelling (Fig. 11-9).
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a) Cold end axial displacement.

600 micro inches/Div.

b) Axial acceleration spectrum.

1 m/s2/volt
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Sheet 1 of 2

Figure 11-5. Displacement and acceleration at cold end. (Cont'd.)
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c) Cold end radial displacement.

20 micro inches/Div.

d) Radial acceleration spectrum.

(at cold end)
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Sheet 2 of 2

Figure 11-5. Displacement and acceleration at cold end.
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Figure 11-6. Radial acceleration spectrum at piston housing.
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Figure 11-7. Radial acceleration spectrum at counterbalance end.
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11.6 Instrumentation for Performance Tests

The following instruments were used for evaluating the cooler performance:

o:• Waveform Measurements

• Tektronix 7854 Digital Oscilloscope With Waveform Calculator.

• Tektronix 7B87 Timebase.

• Tektronix 7A26 Dual Trace Amplifier.

• Tektronix 7A22 Differential Amplifier.

• Tektronix 6063B lx/10x Probe(s).

• Tektronix TM504 Powered Module Rack.

• Tektronix AM503 Current Amplifier.

• Tektronix A6303 Current Probe.

These were used for voltage (i.e., stroke amplitude, voltage, current, dynamic pressure) measure-

ment with nominal vertical resolution of 0.2% of reading, assuming 5 divisions deflection.

Horizontal resolution was 2% of selected time/division (typical frequency resolution to within 0.1
Hz at 20 Hz).

The waveform calculator was used to extract waveform parameters and compute RMS current and

(VI) power. The calculator was also programmed to perform iterative averaging of dynamic

measurements. Waveform calculator measurement parameters and arithmetic functions are accurate

to four significant digits.

•i• Temperature Measurements

• TRI Research Model T-2000 Cryo-controller.

• TRI Research Model CD301-SO-PB-SC3 Cryo Diode.

These were used for temperature measurements. Diode/controller combination is rated accurate to

+ 0. I'K over the range of 25 to 300"K

•:° Phase Measurements

• Dranetz Model 305 Phase Angle Meter.

Assuming an undistorted sinewave input, specified resolution is + 0.01".

indicate an accuracy of + 0.2"

Practical readings

o_- Vibration Measurements

• Bruel & Kjaer Model 4368 Accelerometer.

• Kistler 504E Charge Amplifier.

• MTI 1000 Fotonic Sensor.

The accelerometer/signal conditioner used for vibration measurement was calibrated for an output

of 1 meter per second squared per volt output. Frequency response is flat to beyond 1 kHz.
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A non-contacting(optical reflectance)displacementtransducerusedfor vibration measurement.

The unit was calibrated prior to each measurement, using a micrometer mount, to a sensitivity of

0.0006 inch per volt output.

.t. Other Measurements

• Wavetek 5820 Cross Channel Spectrum Analyzer.

• Hewlett/Packard 3466 Digital Multimeter(s).

This analyzer was used primarily during optimization of the axial and radial control systems and

spectral analysis of vibration measurements. It was also useful to confh'm relative phase angle

measurements, particularly where the fundamental frequency was of interest.

General purpose volt-ohm-ammeter with 4-1/2 digit resolution used to monitor the forward voltage

drop of the temperature sensing diode(s) and for calibration of the axial and radial position sensors.
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